
Appears in Proceedings of ACM SIGMETRICS/Performance 2006 
June 26-30, 2006, Saint Malo, France 

Applying Architectural Vulnerability Analysis to Hard 
Faults in the Microprocessor 

Fred A. Bower 
IBM, Duke University Department of 

Computer Science 
3039 Cornwallis Rd., B205/F4N 

Research Triangle Park, NC 27709 USA 

bowerf@us.ibm.com 

Derek Hower, Mahmut Yilmaz, Daniel J. Sorin, Sule Ozev 
Duke University Department of Electrical and Computer Engineering 

Box 90291 
Durham, NC 27708 USA 

{drh5, my, sorin, sule}@ee.duke.edu 
 

ABSTRACT 
In this paper, we present a new metric, Hard-Fault Architectural 
Vulnerability Factor (H-AVF), to allow designers to more 
effectively compare alternate hard-fault tolerance schemes. In 
order to provide intuition on the use of H-AVF as a metric, we 
evaluate fault-tolerant level-1 data cache and register file 
implementations using error correcting codes and a fault-
tolerant adder using triple-modular redundancy (TMR). For 
each of the designs, we compute its H-AVF. We then use these 
H-AVF values in conjunction with other properties of the 
design, such as die area and power consumption, to provide 
composite metrics. The derived metrics provide simple, 
quantitative measures of the cost-effectiveness of the evaluated 
designs.   

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault Tolerance  

C.1.0 [Processor Architectures]: General 

General Terms 
Design, Measurement, Reliability 
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1. INTRODUCTION 
Microarchitects seeking to implement low-cost hard-fault 
tolerance are currently stymied by the lack of a simple, 
quantitative measure with which to analyze their designs.  
Having such a tool would help microarchitects in understanding 
where a design is in need of additional hardening.  Further, this 
metric would allow comparison of competing hard-fault tolerant 
designs. 

Both mean time to failure (MTTF) and failures in time (FIT) are 
used as metrics of component reliability, but both obscure 
important effects from the fault-tolerance microarchitect. First, 
these metrics do not consider the inputs to the component, and 

fault masking is a function of the inputs. Second, these metrics 
do not consider the utilization of the component.  

For analyzing a processor’s vulnerability to soft faults, previous 
work has introduced the widely-embraced architectural 
vulnerability factor (AVF) metric [2]. AVF is an insightful 
measure of the vulnerability of a storage structure (e.g., reorder 
buffer, reservation station, etc.) to soft faults. In the equation for 
AVF, the occupancy of the structure is divided into bits that 
affect architecturally correct execution (ACE) and the total of 
all bits. The metric reflects the fraction of time a storage cell is 
occupied by an ACE bit. Unfortunately, AVF does not apply to 
hard faults or to combinational logic. 

2. A METRIC FOR HARD-FAULT 
TOLERANCE 
Intuitively, H-AVF for a structure is directly proportional to the 
probability that a fault in that structure—for all possible fault 
sites and fault models—causes an instruction to commit 
erroneous state. For a given software benchmark, the H-AVF of 
a structure is computed as shown below. 
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In the equation, we compute the absolute number of instructions 
that would commit erroneous architectural state for a given 
instruction’s set of inputs (instserror). This sum is then divided by 
the absolute number of fault sites for the structure under 
evaluation (a constant for the structure). Results are averaged 
over all instructions to provide accurate accounting of masking 
effects for a given workload. This process is repeated for each 
of the fault models that are considered. The most common fault 
models are single-bit-stuck-at-0 and single-bitstuck-at-1. Other 
fault models exist, however, and may be appropriate for a 
particular analysis. H-AVF supports the application of multiple 
fault models, if appropriate. Lower H-AVF values indicate that 
a given design is less vulnerable.  As intuition would suggest, a 
design with fewer possible fault models, each with an equal 
effect on architectural correctness, will have a lower H-AVF 
than a design that is subject to more fault models.   

Fault densities are generally considered to be constant for a 
given process technology. Thus, without area normalization, it 
is possible for raw H-AVF numbers to provide misleading 
conclusions. By normalizing the H-AVF to H-AVF per 
transistor, we can compare designs with equivalent 
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functionality, but wildly differing implementations. 
Additionally, H-AVF can be composed with cost metrics such 
as area and power consumption.  These normalized, composed 
metrics provide the microarchitect with the ability to balance 
hard-fault tolerance and cost requirements in a design space. 

3. USING H-AVF TO EVALUATE 
PROCESSOR SUB-STRUCTURES 
Now that we have developed H-AVF as a metric, we will 
analyze two representative storage structures and one 
combinational logic structure found in the modern 
microprocessor, the register file, the L1 data cache, and the 64-
bit integer adder. We selected these because they are 
representative structures within the microprocessor and well-
known protection mechanisms exist for all three. Error 
correcting codes (ECC) are used for the two storage structures 
and triple-modular redundancy (TMR) is used for the adder. 

3.1 Structure Details 
In the microprocessor, the register file is a storage array that 
stores the inputs and outputs of instructions. It is a small, fast 
structure whose correct operation is critical to the correctness of 
the processor. For purposes of this study, we model a register 
file with 126 64-bit entries.  

Cache memories are commonly used in microprocessors to hide 
the main memory access latency and, thus, increase 
performance. The level of a cache indicates how close it is to 
the processor, with the closest cache having the smallest level. 
The L1 data cache is the first cache that the processor accesses 
when a memory value is needed. For the experiments we run, 
we model after the Pentium 4, using a 16KB L1 data cache, 
consisting of 256 64-byte blocks. 

The 64-bit integer adder is at the heart of the modern 
microprocessor.  It is used for integer arithmetic operations as 
well as common activities like calculating memory addresses.   

3.2 Determining H-AVF 
It is an intractable problem with current compute resources to 
evaluate all 64-bit inputs to a structure. Even if we could 
perform such an evaluation, we would not want to assume equal 
weighting for each input, as certain inputs are much more likely 
than others, and should thus weight our H-AVF measurement 
commensurate with their impact for an actual workload.  

Thus we use the SPECCPU 2000 benchmark suite to provide 
inputs for all of our experiments.  For the data cache and register 
file, we simulated the first 10 million instructions from each 
benchmark, using the sim-cache simulator from the 
SimpleScalar simulation environment [1].   For the adder, we 
used SimPoint [3] sampling of 100 million instructions per 
benchmark simulated with a modified version of the sim-mase 
simulator [1]. 

The results in Table 1 are averaged over the entire benchmark 
suite. To account for the area overhead of the protected 
implementations, we normalized results by scaling by the ratio 
of transistors in the protected implementation to the base 
implementation. For the register file, this factor was ~1.15. For 
the L1 data cache, this factor was ~1.10. For the TMR adder, 

this factor was ~3.31.  The small magnitudes of the results are 

due to the large size of the structures with respect to the values 
we are storing and, in the case of the cache, the low cache miss 
rates that the benchmark code exhibits. 

For all structures, the fault-tolerance increases are significant. 
The ECC-protected register file is ~8.4 times more hard-fault 
tolerant than its unprotected counterpart. The ECC-protected L1 
data cache is ~5.8 times more hard-fault tolerant than its 
unprotected counterpart.  Finally, the TMR-protected adder is 
~2.8 times more hard-fault tolerant. 

4. CONCLUSIONS 
With the development of H-AVF, we have provided a general-
purpose metric for the microarchitect. It can be used first to 
evaluate whether a particular sub-structure in the 
microprocessor will benefit from hardening. It can then be used, 
either by itself or composed with other design metrics, to 
compare hard-fault tolerant designs to provide a quantitative 
basis for comparison of competing designs. 
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Table 1. Average H-AVF Results for Unprotected and 
ECC-Protected Register File and L1 Data Cache and 

Unprotected and TMR-Protected 64-Bit Integer Adder 

Structure Base 
H-AVF 

Protected  
H-AVF 

Normalized 
Protected  
H-AVF 

Register File 0.08388 0.00871 0.00958 

L1 Data Cache 0.00486 0.00076 0.00084 

64-Bit Adder 0.1488 0.0161 0.0533 


