
Sequential Consistency for

Heterogeneous-Race-Free

DEREK R. HOWER, BRADFORD M. BECKMANN, BENEDICT R. GASTER,

BLAKE A. HECHTMAN, MARK D. HILL, STEVEN K. REINHARDT, DAVID A. WOOD

JUNE 12, 2013

2 MSPC 2013 | JUNE 21, 2013

EXECUTIVE SUMMARY

Existing GPU memory models ambiguous, dense for programmers

CPUs: Sequential Consistency for Data-Race-Free (SC for DRF)

– Relaxed HW, precise semantics, programmer-friendly

– Problem: GPUs use scoped synchronization

Sequential Consistency for Heterogeneous-Race-Free (SC for HRF)

– SC for DRF + Scopes

HRF0: Basic scope synchronization

– Two threads communicate use identical scope synchronization

– Works well with existing, regular GPU codes

Beyond HRF0?

– There are limits

3 MSPC 2013 | JUNE 21, 2013

OUTLINE

Background and Setup

HRF0: Basic scope synchronization

Future directions

4 MSPC 2013 | JUNE 21, 2013

BACKGROUND AND SETUP

 CPU Programmers use memory model to understand memory behavior

– Sequential Consistency (SC) [1979]: threads interleave like multitasking

uniprocessor

5 MSPC 2013 | JUNE 21, 2013

BACKGROUND AND SETUP

 CPU Programmers use memory model to understand memory behavior

– Sequential Consistency (SC) [1979]: threads interleave like multitasking

uniprocessor

– HW/Compiler actually implements TSO [1991] or more relaxed model

6 MSPC 2013 | JUNE 21, 2013

BACKGROUND AND SETUP

 CPU Programmers use memory model to understand memory behavior

– Sequential Consistency (SC) [1979]: threads interleave like multitasking

uniprocessor

– HW/Compiler actually implements TSO [1991] or more relaxed model

– JavaTM [2005] and C++ [2008] insure SC for data-race-free (DRF) programs

 Programmers need a GPU memory model for abstraction and portability

– Currently GPU models expose ad hoc HW mechanisms

– SC for DRF is a start, BUT…

7 MSPC 2013 | JUNE 21, 2013

BACKGROUND AND SETUP

 CPU Programmers use memory model to understand memory behavior

– Sequential Consistency (SC) [1979]: threads interleave like multitasking

uniprocessor

– HW/Compiler actually implements TSO [1991] or more relaxed model

– JavaTM [2005] and C++ [2008] insure SC for data-race-free (DRF) programs

 Programmers need a GPU memory model for abstraction and portability

– Currently GPU models expose ad hoc HW mechanisms

– SC for DRF is a start, BUT…

 OpenCLTM Execution Model

8 MSPC 2013 | JUNE 21, 2013

SEQUENTIAL CONSISTENCY FOR DATA-RACE-FREE

Two memory accesses participate in a data race if they

– access the same location

– at least one access is a store

– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

A program is data-race-free if no possible execution

results in a data race.

Sequential consistency for data-race-free programs
– Avoid everything else

GPUs: Not good enough!

9 MSPC 2013 | JUNE 21, 2013

DATA-RACE-FREE IS NOT ENOUGH

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

t4 t3 t1 t2

SGlobal

S12 S34

10 MSPC 2013 | JUNE 21, 2013

DATA-RACE-FREE IS NOT ENOUGH

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

 Two ordinary memory accesses participate in a data race if they

Access same location

At least one is a store

Can occur simultaneously

11 MSPC 2013 | JUNE 21, 2013

DATA-RACE-FREE IS NOT ENOUGH

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

 Two ordinary memory accesses participate in a data race if they

Access same location

At least one is a store

Can occur simultaneously

Not a data race…

 Is it SC?

12 MSPC 2013 | JUNE 21, 2013

WHAT WILL HAPPEN?

“waits until all…memory accesses made by the calling

thread prior to [{Group, Global}Lock.Release()] are visible

to…all threads in the {group, device}”

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

CUDATM __threadfence{_block} definition:

13 MSPC 2013 | JUNE 21, 2013

WHAT WILL HAPPEN?

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

Heterogeneous Race!

Makes X =1 visible to t2

Makes … visible to t3

14 MSPC 2013 | JUNE 21, 2013

SEQUENTIAL CONSISTENCY FOR DATA-RACE-FREE

Two memory accesses participate in a data race if they

– access the same location

– at least one access is a store

– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

A program is data-race-free if no possible execution

results in a data race.

Sequential consistency for data-race-free programs
– Avoid everything else

15 MSPC 2013 | JUNE 21, 2013

SEQUENTIAL CONSISTENCY FOR HETEROGNEOUS-

RACE-FREE

Two memory accesses participate in a heterogeneous race if

– access the same location

– at least one access is a store

– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

– Are not synchronized with “enough” scope

A program is heterogeneous-race-free if no possible

execution results in a heterogeneous race.

Sequential consistency for heterogeneous-race-free

programs
– Avoid everything else

16 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

17 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

HRF0: Basic Scope Synchronization

18 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

HRF0: Basic Scope Synchronization
– “enough” = both threads synchronize using identical scope

19 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

HRF0: Basic Scope Synchronization
– “enough” = both threads synchronize using identical scope

Recall example:
– Contains a heterogeneous race in HRF0

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

20 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

HRF0: Basic Scope Synchronization
– “enough” = both threads synchronize using identical scope

Recall example:
– Contains a heterogeneous race in HRF0

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

21 MSPC 2013 | JUNE 21, 2013

A FIRST CUT

HRF0: Basic Scope Synchronization
– “enough” = both threads synchronize using identical scope

Recall example:
– Contains a heterogeneous race in HRF0

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4 HRF0 Conclusion:

This is bad. Don’t do it.

22 MSPC 2013 | JUNE 21, 2013

IS HRF0 USEFUL?

Use smallest scope that includes all

producers/consumers of shared data

HRF0 Scope Selection Guideline

Want: For performance, use smallest scope possible

What is safe in HRF0?

23 MSPC 2013 | JUNE 21, 2013

IS HRF0 USEFUL?

Use smallest scope that includes all

producers/consumers of shared data

HRF0 Scope Selection Guideline

Implication:

Producers/consumers must be known at synchronization time

Want: For performance, use smallest scope possible

What is safe in HRF0?

24 MSPC 2013 | JUNE 21, 2013

IS HRF0 USEFUL?

Use smallest scope that includes all

producers/consumers of shared data

HRF0 Scope Selection Guideline

Implication:

Producers/consumers must be known at synchronization time

Want: For performance, use smallest scope possible

What is safe in HRF0?

Is this a valid assumption?

25 MSPC 2013 | JUNE 21, 2013

REGULAR GPGPU WORKLOADS

N

M

Define

Problem Space

Partition

Hierarchically

Communicate

Locally

N times

Communicate

Globally

M times

Well defined (regular) data partitioning +

Well defined (regular) synchronization pattern =

 Producer/consumers are always known

26 MSPC 2013 | JUNE 21, 2013

REGULAR GPGPU WORKLOADS

N

M

Define

Problem Space

Partition

Hierarchically

Communicate

Locally

N times

Communicate

Globally

M times

Well defined (regular) data partitioning +

Well defined (regular) synchronization pattern =

 Producer/consumers are always known

Generally: HRF0 works well with

existing regular GPGPU workloads

27 MSPC 2013 | JUNE 21, 2013

IRREGULAR GPGPU WORKLOADS

 HRF0: example is race

– Must upgrade Group -> Global

 Current hardware:

– LD X will see value (1)!

 t1 t2 t3 t4

ST X = 1

GroupLock.Release()
 GroupLock.Acquire()
 ...

 GlobalLock.Release()
 GlobalLock.Acquire()
 LD X (??)

Workgroup #1-2 Workgroup #3-4

28 MSPC 2013 | JUNE 21, 2013

HRFX: THE NEXT ITERATION

 HRF0 is overly conservative on existing HW

– Makes fast irregular parallelism hard

 Other HRF definitions are possible

– e.g., define behavior when different scopes interact

 What are the gotchas? (there will be many…)

The answer: ???

29 MSPC 2013 | JUNE 21, 2013

CONCLUSIONS & FUTURE DIRECTIONS

 GPUs Currently expose ad-hoc scoped synchronization

 From CPU world: mask low-level details with SC for DRF

– GPU scope synchronization incompatible w/ SC for DRF

 GPUs: SC for HRF

– HRF0: Basic scope synchronization

+ Easy-ish to define/understand

+ Safe interpretation of existing models

+ Permits most HW optimizations

− Prohibits some SW opts in current hardware

– HRFx: models to exploit hierarchy

• What happens when different scopes interact?

 Let’s not wait 30 years this time

THANKS!

QUESTIONS?

BACKUP

32 MSPC 2013 | JUNE 21, 2013

BASIC APPLICATION EXAMPLE – SEQUENCE ALIGNMENT

Well defined (regular) synchronization pattern +

Well defined (regular) data partitioning =

 Producer/consumers are always known

Smallest box: Wavefront

Intermediate box: Workgroup

Full box: NDRange

NW NW N N

W W

Generally: HRF0 works well with

existing regular GPGPU workloads

34 MSPC 2013 | JUNE 21, 2013

SCOPED SYNCHRONIZATION

 Some operations are not global, have visibility limited to workgroup or device

– HSAIL: st_{rel, part_rel}, ld_{acq, part_acq}, etc.

– CUDATM: threadfence_{block, system}, __syncthreads, etc.

– PTX: membar.{cta, gl, sys}, bar, etc.

t4 t3 t1 t2

SGlobal

S12 S34

35 MSPC 2013 | JUNE 21, 2013

EXECUTIVE SUMMARY

 GPUs: streaming memory system, hierarchical programming model

– Use partial (scoped) synchronization

– Existing GPU memory models ambiguous, dense for programmers

 From the CPU world: SC for DRF

– Relaxed HW, precise semantics, programmer-friendly

– Let’s not wait 30 years this time

 This work: apply same principle to GPU world

– Sequential Consistency for Heterogeneous-Race-Free (SC for HRF)

 HRF0: Basic scope synchronization

– Two threads communicate use identical scope synchronization

– Works well with existing GPU codes

 Others possible. HRF0 is:

– Difficult to use efficiently w/ irregular synchronization

– Overly conservative for current implementations

36 MSPC 2013 | JUNE 21, 2013

INSERTING SCOPED SYNCHRONIZATION

Synchronization Scope:

 WF on N, W edge of WG use global acquire

 WF on S, E edge of WG use global release

 All other sync is local

Acquire_S?
cell[id] = fn(cell[N],

 cell[NW],

 cell[W])

Release_S?

37 MSPC 2013 | JUNE 21, 2013

EXAMPLE AMBIGUITY

 What value of X does t3 see?

 t1 t2 t3 t4

ST X = 1

Release_S12
 Acquire_S12
 LD X (1)

 Release_SGlobal
 Acquire_SGlobal
 LD X (??)

t4 t3 t1 t2

SGlobal

S12 S34

Answer not obvious -- depends on system

38 MSPC 2013 | JUNE 21, 2013

EXAMPLE: CONVENTIONAL BASE SYSTEM

 Conventional write-through/combining cache hierarchy:

– Local release flush stores from queue

– Local acquire stall until queue is empty

– Global acquire Invalidate all valid locations in L1 cache

– Global release Flush all dirty locations in L1 cache

L1 L1

L2

t1 t2 t2 t3 t4 t4

 wf1 wf2 wf3 wf4

ST X = 1

Release_S12
 Acquire_S12
 LD X (1)

 Release_SGlobal
 Acquire_SGlobal
 LD X (??) WF3 ALWAYS sees (1)

X = 1

ST X = 1

Release_S12
Acquire_S12
LD X (1)

X = 1

Release_SGlobal
Acquire_SGlobal
LD X (??)

X = 1

X = 1

39 MSPC 2013 | JUNE 21, 2013

EXAMPLE: OPTIMIZED BASE SYSTEM

 Optimized write-combining cache hierarchy

– Local release flush stores from queue

– Local acquire stall until queue is empty

– Global acquire Inv. locations read by acquiring WF in L1

– Global release Flush locations written by releasing WF in L1

L1 L1

L2

t1 t2 t2 t3 t4 t4

 t1 t2 t3 wf4

ST X = 1

Release_S12
 Acquire_S12
 LD X (1)

 Release_SGlobal
 Acquire_SGlobal
 LD X (??) WF3 sees (0) or (1)

X = 1

ST X = 1

Release_S12
Acquire_S12
LD X (1)

X = 1

Release_SGlobal
Acquire_SGlobal
LD X (??)

X = 0

X = 0

40 MSPC 2013 | JUNE 21, 2013

ASSUMPTIONS/SIMPLIFICATIONS

1. Ignore scratchpad (local/group/shared) memory

• i.e., all memory in single, global shared address space

2. Use scoped acquire/release synchronization

• Generalizes to other forms of synchronization

3. Examples: two-level scope hierarchy with simple threads

t4 t3 t1 t2

SGlobal

S12 S34

41 MSPC 2013 | JUNE 21, 2013

APPLICATION EXAMPLE – TASK PARALLEL RUNTIME

Global Queue

Local

Queue

WF1 WF2

Local

Queue

WF3 WF4

Hierarchical task queue:

 - WF produce/consume tasks independently

 - Use local queue until:

 - Local queue empty pull from global

 - Local queue full push to global

Observation:

 - Push/pull performed on behalf of workgroup

HRF0:

 - Either all sync has to be global or WFs

 coordinate to push/pull

HRF1:

 - Single WF can push/pull independently

Beware: HRF1 consumes significant brain power Beware: HRF1 consumes significant brain power

42 MSPC 2013 | JUNE 21, 2013

SCOPES

 Scope: A subset of threads

 Scoped synchronization: synchronization w.r.t. a scope

– OpenCLTM: mem_fence

– HSAIL: st_{rel, part_rel}, ld_{acq, part_acq}, etc.

– CUDATM: threadfence_{block, system}, __syncthreads, etc.

– PTX: membar.{cta, gl, sys}, bar, etc.

 Scopes introduce new class of races:

– What happens when threads (wavefronts/warps) use different scopes?

WF4 WF3 WF1 WF2

SGlobal

S12 S34
L1 L1

L2

WF1 WF2 WF3 WF4

43 MSPC 2013 | JUNE 21, 2013

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and

typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to

product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences

between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO

RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER

CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of

Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. SPEC is a registered trademark of the Standard

Performance Evaluation Corporation (SPEC). Other names are for informational purposes only and may be trademarks of their

respective owners.

