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EXECUTIVE SUMMARY 

Existing GPU memory models ambiguous, dense for programmers 

CPUs: Sequential Consistency for Data-Race-Free (SC for DRF) 

– Relaxed HW, precise semantics, programmer-friendly 

– Problem: GPUs use scoped synchronization 

 

Sequential Consistency for Heterogeneous-Race-Free (SC for HRF) 

– SC for DRF + Scopes 

 

HRF0: Basic scope synchronization 

– Two threads communicate  use identical scope synchronization 

– Works well with existing, regular GPU codes  

Beyond HRF0? 

– There are limits 
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OUTLINE 

Background and Setup 

HRF0: Basic scope synchronization 

Future directions 
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BACKGROUND AND SETUP 

 CPU Programmers use memory model to understand memory behavior  

– Sequential Consistency (SC) [1979]: threads interleave like multitasking 

uniprocessor 
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BACKGROUND AND SETUP 

 CPU Programmers use memory model to understand memory behavior  

– Sequential Consistency (SC) [1979]: threads interleave like multitasking 

uniprocessor 

– HW/Compiler actually implements TSO [1991] or more relaxed model 

– JavaTM [2005] and C++ [2008] insure SC for data-race-free (DRF) programs 

 Programmers need a GPU memory model for abstraction and portability 

– Currently GPU models expose ad hoc HW mechanisms 

– SC for DRF is a start, BUT… 

 OpenCLTM Execution Model 
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SEQUENTIAL CONSISTENCY FOR DATA-RACE-FREE 

Two memory accesses participate in a data race if they 

– access the same location 

– at least one access is a store 

– can occur simultaneously 

• i.e. appear as adjacent operations in interleaving. 

A program is data-race-free if no possible execution 

results in a data race. 

Sequential consistency for data-race-free programs 
– Avoid everything else 

 

 

GPUs: Not good enough! 
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DATA-RACE-FREE IS NOT ENOUGH 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 

t4 t3 t1 t2 

SGlobal 

S12 S34 
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DATA-RACE-FREE IS NOT ENOUGH 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 

 Two ordinary memory accesses participate in a data race if they 

Access same location 

At least one is a store 

Can occur simultaneously 

 

Not a data race… 

     Is it SC? 
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WHAT WILL HAPPEN? 

“waits until all…memory accesses made by the calling 

thread prior to [{Group, Global}Lock.Release()] are visible 

to…all threads in the {group, device}” 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 

CUDATM __threadfence{_block} definition:  
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WHAT WILL HAPPEN? 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 

Heterogeneous Race! 

Makes X =1 visible to t2 

Makes … visible to t3 
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SEQUENTIAL CONSISTENCY FOR DATA-RACE-FREE 

Two memory accesses participate in a data race if they 

– access the same location 

– at least one access is a store 

– can occur simultaneously 

• i.e. appear as adjacent operations in interleaving. 

A program is data-race-free if no possible execution 

results in a data race. 

Sequential consistency for data-race-free programs 
– Avoid everything else 
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SEQUENTIAL CONSISTENCY FOR HETEROGNEOUS-

RACE-FREE 

Two memory accesses participate in a heterogeneous race if 

– access the same location 

– at least one access is a store 

– can occur simultaneously 

• i.e. appear as adjacent operations in interleaving. 

– Are not synchronized with “enough” scope 

A program is heterogeneous-race-free if no possible 

execution results in a heterogeneous race. 

Sequential consistency for heterogeneous-race-free 

programs 
– Avoid everything else 
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A FIRST CUT 
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Recall example: 
– Contains a heterogeneous race in HRF0 
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ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
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                     GlobalLock.Release() 
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Workgroup #1-2 Workgroup #3-4 
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A FIRST CUT 

HRF0: Basic Scope Synchronization 
– “enough” =  both threads synchronize using identical scope 

 

Recall example: 
– Contains a heterogeneous race in HRF0 

 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 HRF0 Conclusion:  

This is bad. Don’t do it. 



22 MSPC 2013   |  JUNE 21, 2013  

IS HRF0 USEFUL? 

Use smallest scope that includes all 

producers/consumers of shared data 
 

HRF0 Scope Selection Guideline 

Want: For performance, use smallest scope possible 

What is safe in HRF0? 
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IS HRF0 USEFUL? 

Use smallest scope that includes all 

producers/consumers of shared data 
 

HRF0 Scope Selection Guideline 

Implication:  

Producers/consumers must be known at synchronization time 

Want: For performance, use smallest scope possible 

What is safe in HRF0? 

Is this a valid assumption? 
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REGULAR GPGPU WORKLOADS 

N 

M 

Define 

Problem Space 

Partition  

Hierarchically 

Communicate 

Locally 

N times 

Communicate 

Globally 

M times 

Well defined (regular) data partitioning + 

Well defined (regular) synchronization pattern = 

 Producer/consumers are always known 
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REGULAR GPGPU WORKLOADS 

N 

M 

Define 

Problem Space 

Partition  

Hierarchically 

Communicate 

Locally 

N times 

Communicate 

Globally 

M times 

Well defined (regular) data partitioning + 

Well defined (regular) synchronization pattern = 

 Producer/consumers are always known 

Generally:  HRF0 works well with 

existing regular GPGPU workloads 
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IRREGULAR GPGPU WORKLOADS 

 HRF0: example is race 

– Must upgrade Group -> Global 

 Current hardware:  

– LD X will see value (1)! 

   t1                        t2                   t3               t4 

ST X = 1 

GroupLock.Release() 
                     GroupLock.Acquire() 
                     ... 

                     GlobalLock.Release() 
                                             GlobalLock.Acquire() 
                                             LD X (??) 

Workgroup #1-2 Workgroup #3-4 
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HRFX: THE NEXT ITERATION 

 HRF0 is overly conservative on existing HW 

– Makes fast irregular parallelism hard 

 Other HRF definitions are possible 

– e.g., define behavior when different scopes interact 

 What are the gotchas? (there will be many…) 

The answer: ??? 
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CONCLUSIONS & FUTURE DIRECTIONS 

 GPUs Currently expose ad-hoc scoped synchronization 

 From CPU world: mask low-level details with SC for DRF 

– GPU scope synchronization incompatible w/ SC for DRF 

 GPUs: SC for HRF 

– HRF0: Basic scope synchronization 

+ Easy-ish to define/understand 

+ Safe interpretation of existing models 

+ Permits most HW optimizations  

− Prohibits some SW opts in current hardware 

– HRFx: models to exploit hierarchy 

• What happens when different scopes interact? 

 Let’s not wait 30 years this time 

 

 



THANKS!  

QUESTIONS? 



BACKUP 



32 MSPC 2013   |  JUNE 21, 2013  

BASIC APPLICATION EXAMPLE – SEQUENCE ALIGNMENT 

Well defined (regular) synchronization pattern + 

Well defined (regular) data partitioning = 

 Producer/consumers are always known 

Smallest box: Wavefront 

Intermediate box: Workgroup 

Full box: NDRange 

NW NW N N 

W W 

Generally:  HRF0 works well with 

existing regular GPGPU workloads 
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SCOPED SYNCHRONIZATION 

 Some operations are not global, have visibility limited to workgroup or device 

– HSAIL: st_{rel, part_rel}, ld_{acq, part_acq}, etc. 

– CUDATM: threadfence_{block, system}, __syncthreads, etc. 

– PTX: membar.{cta, gl, sys}, bar, etc. 

 

 

t4 t3 t1 t2 

SGlobal 

S12 S34 
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EXECUTIVE SUMMARY 

 GPUs: streaming memory system, hierarchical programming model 

– Use partial (scoped) synchronization 

– Existing GPU memory models ambiguous, dense for programmers 

 From the CPU world: SC for DRF 

– Relaxed HW, precise semantics, programmer-friendly 

– Let’s not wait 30 years this time 

 

 This work: apply same principle to GPU world 

– Sequential Consistency for Heterogeneous-Race-Free (SC for HRF) 

 

 HRF0: Basic scope synchronization 

– Two threads communicate  use identical scope synchronization 

– Works well with existing GPU codes  

 Others possible. HRF0 is: 

– Difficult to use efficiently w/ irregular synchronization 

– Overly conservative for current implementations 
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INSERTING SCOPED SYNCHRONIZATION 

Synchronization Scope: 

 WF on N, W edge of WG use global acquire 

 WF on S, E edge of WG use global release 

               All other sync is local 

    

Acquire_S? 
cell[id] = fn(cell[N],  

              cell[NW], 

              cell[W]) 

Release_S? 
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EXAMPLE AMBIGUITY 

 What value of X does t3 see? 

   t1           t2                   t3               t4 

ST X = 1 

Release_S12 
              Acquire_S12 
              LD X (1) 

              Release_SGlobal 
                                Acquire_SGlobal 
                                LD X (??) 

t4 t3 t1 t2 

SGlobal 

S12 S34 

Answer not obvious -- depends on system 
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EXAMPLE: CONVENTIONAL BASE SYSTEM 

 Conventional write-through/combining cache hierarchy: 

– Local release  flush stores from queue 

– Local acquire  stall until queue is empty 

 

– Global acquire  Invalidate all valid locations in L1 cache 

– Global release  Flush all dirty locations in L1 cache  

 

L1 L1 

L2 

t1 t2 t2 t3 t4 t4 

   wf1           wf2               wf3               wf4 

ST X = 1 

Release_S12 
              Acquire_S12 
              LD X (1) 

              Release_SGlobal 
                                Acquire_SGlobal 
                                LD X (??) WF3 ALWAYS sees (1) 

X = 1 

ST X = 1 

Release_S12 
Acquire_S12 
LD X (1) 

X = 1 

Release_SGlobal 
Acquire_SGlobal 
LD X (??) 

X = 1 

X = 1 

 



39 MSPC 2013   |  JUNE 21, 2013  

EXAMPLE: OPTIMIZED BASE SYSTEM 

 Optimized write-combining cache hierarchy 

– Local release  flush stores from queue 

– Local acquire  stall until queue is empty 

 

– Global acquire  Inv. locations read by acquiring WF in L1 

– Global release  Flush locations written by releasing WF in L1  

 

L1 L1 

L2 

t1 t2 t2 t3 t4 t4 

   t1           t2                   t3               wf4 

ST X = 1 

Release_S12 
              Acquire_S12 
              LD X (1) 

              Release_SGlobal 
                                Acquire_SGlobal 
                                LD X (??) WF3 sees (0) or (1) 

X = 1 

ST X = 1 

Release_S12 
Acquire_S12 
LD X (1) 

X = 1 

Release_SGlobal 
Acquire_SGlobal 
LD X (??) 

X = 0 

X = 0 
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ASSUMPTIONS/SIMPLIFICATIONS 

1. Ignore scratchpad (local/group/shared) memory 

• i.e., all memory in single, global shared address space 

2. Use scoped acquire/release synchronization 

• Generalizes to other forms of synchronization 

3. Examples: two-level scope hierarchy with simple threads 

 

 

t4 t3 t1 t2 

SGlobal 

S12 S34 
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APPLICATION EXAMPLE – TASK PARALLEL RUNTIME 

Global Queue 

Local 

Queue 

WF1 WF2 

Local 

Queue 

WF3 WF4 

Hierarchical task queue: 

  - WF produce/consume tasks independently 

  - Use local queue until: 

      - Local queue empty  pull from global 

      - Local queue full  push to global 

 

Observation: 

    - Push/pull performed on behalf of workgroup 

 

HRF0: 

   - Either all sync has to be global or WFs  

     coordinate to push/pull 

HRF1: 

   - Single WF can push/pull independently 

Beware: HRF1 consumes significant brain power Beware: HRF1 consumes significant brain power 
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SCOPES 

 Scope: A subset of threads 

 Scoped synchronization: synchronization w.r.t. a scope 

– OpenCLTM: mem_fence 

– HSAIL: st_{rel, part_rel}, ld_{acq, part_acq}, etc. 

– CUDATM: threadfence_{block, system}, __syncthreads, etc. 

– PTX: membar.{cta, gl, sys}, bar, etc. 

 Scopes introduce new class of races: 

– What happens when threads (wavefronts/warps) use different scopes? 

 

WF4 WF3 WF1 WF2 

SGlobal 

S12 S34 
L1 L1 

L2 

WF1 WF2 WF3 WF4 
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