
This paper appears in the Workshop on Memory Systems Performance and Correctness (MSPC)

Seattle, WA June 2013

Work by Hill and Wood was performed while consulting for AMD Research. Work

by Hechtman was performed while on internship at AMD Research.

Sequential Consistency for Heterogeneous-Race-Free

Programmer-centric Memory Models for Heterogeneous Platforms

Derek R. Hower
†
 Bradford M. Beckmann

†
 Benedict R. Gaster

†
 Blake A. Hechtman

†‡
.

Mark D. Hill
*†

 Steven K. Reinhardt
†
 David A. Wood

*†

†AMD Research *University of Wisconsin ‡Duke University
 Dept. of Computer Sciences Dept. of Electrical and Computer Engineering

{derek.hower, brad.beckmann, benedict.gaster, steve.reinhardt}@amd.com {markhill, david}@cs.wisc.edu blake.hechtman@duke.edu

Abstract

Hardware vendors now provide heterogeneous platforms in
commodity markets (e.g., integrated CPUs and GPUs), and
are promising an integrated, shared memory address space
for such platforms in future iterations. Because not all
threads in a heterogeneous platform can communicate with
the same latency, vendors are proposing synchronization
mechanisms that allow threads to communicate with a
subset of threads (called a scope). However, vendors have
yet to define a comprehensive and portable memory model
that programmers can use to reason about scopes. Moreo-
ver, existing CPU memory models, such as Sequential
Consistency for Data-Race-Free (SC for DRF), are ill-
suited, in part, because they define all synchronization
operations globally and preclude low-energy, high-
performance local coordination.

Towards this end, we embrace scoped synchronization
with a new class of memory consistency models: Sequen-
tial Consistency for Heterogeneous-Race-Free (SC for
HRF). Inspired by SC for DRF (C++, Java), the new mod-
els provide programmers with SC for programs with "suffi-
cient" synchronization (no data races) of "sufficient" scope.
We develop the first such model, called HRF0, show how it
can be used to develop high-performance code, show ex-
ample hardware support, and motivate future work.

1. Introduction

Heterogeneous systems, such as those containing graphics
processing units (GPUs), are often organized in a hierarchy
for performance reasons. This hierarchy is exposed directly
to software by programming models like OpenCL™ [27]
and CUDA [29], which bundle threads into tightly coupled
groups called workgroups (OpenCL) or blocks (CUDA).
On these systems, communication among threads in the
same group is faster and more efficient than communica-
tion among threads in different groups [27, 29].

For this reason, high-performance code is written in a
group-centric manner. For example, consider the code in
Figure 1, which represents a common method of perform-
ing a stencil computation on a GPGPU [8, 26]. Rather than
requiring inter-group communication at every timestep, as

is common in CPU-based stencil implementations [22], this
application performs a small amount of redundant compu-
tation so multiple timesteps can be computed within a
group before global synchronization is needed.

In this method, called “ghost zones” [26] or “overlapped
tiling” [22], a 2-D problem space is broken into MxM parti-
tions that each group is responsible for in the final output.
However, each group actually computes points on a
(M+2G)x(M+2G) partition, where points outside the main
MxM partition are redundant copies of points owned by
another group and are said to lie in the ghost zone. By us-
ing the ghost zone, a group can perform G timesteps locally
without needing inter-group communication. Beyond G
timesteps, the points in the ghost zone are all invalid, re-
quiring a global barrier and a refresh of the ghost zone
values before proceeding.

How does a programmer ensure that the code in Figure 1
is synchronized correctly? In particular, how can a pro-
grammer be sure that the code in line 07 actually reads the
updated ghost zone values (i.e., the neighbor's updates are
not still in a private cache)? In current systems, the only
option is to develop an understanding of the hardware-
centric memory models used by languages like CUDA and
OpenCL, or, if you enjoy the nuanced art of assembly pro-
gramming, the similarly hardware-centric memory model
of intermediate representations like PTX [30]. However,
these hardware-centric models can be difficult to compre-
hend, ambiguous, or both, especially for software-oriented
programmers.

To shield programmers from the complexities of hard-
ware-centric memory models, many successful high-level
languages adopt programmer-centric memory models. For
example, both C++ [4] and Java [24] have adopted memory
models from the class of Sequential Consistency for Data-
Race-Free (SC for DRF) [2]. With SC for DRF, program-
mers can reason in terms of the intuitive sequential con-

01: while t < num_timesteps: /* Global loop */
02: G times do: /* Local (group) loop */
03: grid[id_x][id_y] = f(neighbors)
04: barrier(threads in group)
05: t += G
06: barrier(all threads)
07: read ghost zone values from neighbors

Figure 1. Pseudo-code for a single thread in a stencil
“ghost zone” GPGPU application.

2

sistency model as long as they can ensure their code is
correctly synchronized and free of data races.

Unfortunately, existing SC for DRF models are not a
good match for heterogeneous systems like GPUs because
they are defined in terms of a single, global order of syn-
chronization. In an SC for DRF model, memory operations
(logically) must become visible to all threads in the system
at the same time. In a GPU, this means that any synchroni-
zation, even if it is local to a group, must by definition
result in global visibility; in Figure 1, for example, all prior
updates before the group barrier on Line 04 must be global-
ly visible, even though it clear that full global visibility at
that point is not required by the algorithm.

To resolve the conflict between high-performance syn-
chronization in heterogeneous systems and programmer-
centric memory models common in homogeneous systems,
we propose a new class of memory models called Sequen-
tial Consistency for Heterogeneous-Race-Free (SC for
HRF). In SC for HRF, all synchronization operations occur
with respect to a subset of threads in an execution called a
scope. When threads synchronize with a scope, they indi-
cate that the synchronization effects -- including memory
ordering -- can be limited to other threads in that scope. For
example, we might say that the barrier on Line 04 in Figure
1 performs with respect to group scope and indicates that
memory operations should be visible within, but not neces-
sarily beyond, the local thread group.

Like the class of SC for DRF models from which we
take inspiration, SC for HRF models allow programmers to
reason in terms of sequential consistency so long as the
programs they write are free of heterogeneous races. Intui-
tively, a heterogeneous race occurs if either (a) two con-
flicting (same address and at least one is a write) memory
operations are not separated by any synchronization (á la a
data race) or (b) the synchronization used is not performed
with respect to sufficient scope, where sufficiency is de-
termined by the specific SC for HRF model being used.

In this paper, we propose the first such model called
HRF0. In HRF0, if two threads communicate, they must
synchronize using operations of identical scope. We pro-
vide a formal definition of this first model, show how it can
be used to write high-performance code, and show a basic
hardware implementation. However, we also show how
HRF0 may be limiting to software, thus hinting at the need
for further investigation into alternative SC for HRF for-
malizations.

In summary, we make the following contributions:

 We observe that existing memory consistency models
are ill-suited for future heterogeneous platforms that
will use a single shared address space while still provid-
ing the ability to coordinate and synchronize locally.

 We propose a class of SC for HRF memory models that
guarantee a sequentially consistent execution for any
program that ensures all conflicting data accesses are
coordinated with sufficient scoped synchronization.

We formally define the first SC for HRF model, HRF0, and
show how it can be used and how hardware can support it,
and motivate future work.

Like key SC for DRF papers [1, 4, 24], we focus on cor-

rectness and do not provide simulation results.

2. Background and Related Work

Although we believe SC for HRF models will be useful
more generally for systems with heterogonous components,
we focus on general-purpose GPUs (GPGPUs) in this paper
due to their growing relevance and to make the discussion
more concrete. This section discusses the state of the art in
memory models for both GPGPUs and CPUs and describes
why we believe none is completely appropriate for future
systems.

2.1 Current GPGPU Models

Current GPGPU programming models group threads in
several ways. First, a group of threads is bundled into a 64-
thread wavefront (AMD) or 32-thread warp (NVIDIA) that
execute together in lockstep on SIMD hardware. Second,
wavefronts are grouped into workgroups (AMD) or blocks
(NVIDIA). All threads in a workgroup execute concurrent-
ly and share resources, including a group memory (AMD)
or shared memory (NVIDIA) that is accessible only by
threads in the workgroup/block.

Both OpenCL and CUDA provide synchronization op-
erations for threads communicating within a
workgroup/block [3, 28] (i.e., scoped synchronization oper-
ations). In OpenCL 1.x, threads in a workgroup can syn-
chronize via a barrier, which also acts as a workgroup
memory fence such that all operations before the barrier are
guaranteed to have completed before any thread leaves the
barrier and any operation after the barrier is guaranteed not
to be moved ahead of the barrier. Inter-workgroup commu-
nication is undefined behavior in OpenCL, though, as we
will detail, that has not stopped programmers from writing
code that uses workgroup communication based on
knowledge of microarchitectural details.

2.1.1 Example of Ambiguity in Current Models

CUDA has a barrier operation for threads in the same

block called __syncthreads that is similar to the OpenCL
barrier. In addition, CUDA also provides memory-fence

 t1 t2 t3
ST X = 1
__syncthreads
 /* group sync */
 __syncthreads
 LD X (1)

 /* global sync */
 __threadfence_system
 ATOMIC_ST Y = 2
 LD Y (2)
 LD X (?)

Figure 2. Ambiguous behavior in CUDA. Assume all
locations initially hold the value 0, threads t1 and t2 belong
to the same block, and t3 is in a different block. Will the
LD X on t3 see the value of ST X from t1? In our view,
that is open to interpretation based on the published
memory model. In current hardware we believe the answer
is “yes,” though that may change in future generations.

3

(called __threadfence) operations for the device (GPU)
and system (GPU + CPU) scopes. CUDA, like OpenCL,
defines the semantics of these operations in a hardware-
centric manner. This can be difficult to understand for
software-oriented programmers and also ambiguous in
some corner cases.

We show an example of ambiguous CUDA behavior in
Figure 2. In it, two threads in the same block (t1 and t2)
first synchronize with each other using the block-barrier
operation __syncthreads. Later, thread t2 synchronizes
with the entire system using __threadfence_system. After
t3, on a different block, observes the atomic store per-
formed by t2 (which cannot bypass the threadfence), the
question is: Does t3 observe the original store to X by t1?

We can find no clear answer based on the CUDA
memory model. From the documentation, we know that
before completing a __threadfence_system, a thread
“waits until all global and shared memory accesses made
by the calling thread prior to __threadfence_system are
visible to … all threads in the device for global memory
accesses.” Does this mean that by performing a load of X
before the threadfence, t2 makes the value produced by t1
visible to t3? We are confident, given knowledge of the
current hardware implementation, that the answer is “yes,”
but have less confidence that is the intent of the memory
model or that the answer will remain the same in future
hardware generations.

2.1.2 Programmers Desire More

While the previous example may seem contrived, there is
ample evidence that programmers are pushing the bounda-
ries of GPGPU programming models despite the presence
of undefined and/or ambiguous behavior. For example, the
popular persistent threads programming paradigm [14] uses
knowledge of how workgroups are scheduled together on a
GPU to perform global communication among thread
groups, even though (especially in OpenCL) global com-
munication among thread groups is officially unsupported.

Because of this push for more general programming, we
think it is important to develop a rigorously defined and
easy to comprehend memory model that can serve as a
guideline for writing portable code. We believe the class of
SC for HRF models can fill that role.

2.2 Current and Future GPU Caches

Historically, GPUs contain at least two types of local mem-
ories (some have more, but for simplicity we omit them
here). First, GPUs have a software-managed scratchpad
that is addressable only by threads in a workgroup/block.
Second, they contain hardware-managed caches that hold
addresses in a global memory space that can be used by all
threads on the device. As a result, threads manage data in
multiple, disjoint address spaces, and, notably, must explic-
itly copy data to/from the group scratchpad space.

However, vendors have started to support more general
memory models with a single address space. For example,
NVIDIA now provides a software-managed L1 cache in the
global address space that can be used by threads in a block
[28] and AMD, in consortium with other companies in the
Heterogeneous System Architecture (HSA) Foundation, has
indicated support for shared virtual memory with a flat
address space [17]. In addition, both have started to intro-
duce features that will allow more fine-grained sharing
among GPU threads [19]. Ultimately, these changes are
aimed at making GPGPUs more usable for workloads that
may not be as embarrassingly parallel as graphics.

Even with a shared address space and a move towards
more general programming models, some remnants of the
thread groups are likely to persist because they are useful
for graphics (and at the end of the day, GPUs do graphics).
In particular, we expect that the current thread-grouping
into wavefront/warp and workgroup/block will persist. We
also expect that caches, though they may be unified under a
single address space, will not be invisible to software. In
CPUs, software does not need to manage caches for cor-
rectness or performance reasons because they are managed
by the hardware cache-coherence protocol. Providing simi-
lar read-for-ownership coherence on GPUs seems unlikely
(see Keckler et al. [19] for a good overview of why), and so
we expect that GPU caches will continue to behave like
high-throughput write-through/write-coalescing caches.
When synchronizing, these caches are typically
flushed/invalidated to ensure that memory ordering con-
straints are met. Because these flushes/invalidates can be
long-latency events, GPGPU models provide scoped syn-
chronization primitives that permit synchronization to
complete before those flushes reach all the way to main
memory (and, for example, only need to reach a shared
cache). Because it is likely this cache design will persist,
we expect software will still have some responsibility for
cache management (e.g., by selecting the appropriate syn-
chronization scope).

2.3 Sequential Consistency for Data-Race-Free

Sequential consistency guarantees that the observed order
of all memory operations is consistent with a theoretical
execution in which each instruction is performed one at a
time by a single processor [23]. SC preserves programmer
sanity by allowing them to think about their parallel algo-
rithm in sequential steps. Unfortunately, though true, SC
can be difficult to implement effectively without sacrificing
performance or requiring deeply speculative execution
[13]. As a result, most commercially relevant architectures,
run times, and languages use a model weaker than SC that
allows certain operations to appear out of program order at
the cost of increased programmer effort.

Figure 3. Simple baseline system.

4

To bridge the gap between the programming simplicity
of SC and the high performance of weak models, the SC for
DRF class of models exist and guarantee an SC execution
only in the absence of data races. Without data races, the
system is free to perform any reordering that would not
cause an observable violation of SC. Models in the class
differ on the defined behavior in the presence of a data
race, and vary from providing no guarantees [2, 4] to
providing weak guarantees like write causality [24].

In SC for DRF models, memory accesses are grouped
into one of two categories: data or synchronization. Syn-
chronization accesses are ordered sequentially with respect
to one another (i.e., they form a total global order). A data
race occurs if two conflicting (same address, different
threads, at least one is a write) data accesses perform and
are not separated by a synchronization access. Said another
way, a program contains a data race if, in some sequentially
consistent execution, it is possible for two conflicting data
accesses to appear next to each other in the total memory
access order.

One downside of the SC for DRF models is that racey
software has undefined behavior. This can be especially
problematic in codes that use intentional (benign) data
races or in codes containing unintentional bugs. To address
this, Marino et al. proposed the DRFx model that, in addi-
tion to guaranteeing sequential consistency for data race-
free programs, will raise a memory model exception when
a racey execution violates sequential consistency [25]. To
do so, the authors propose adding SC violation detection
hardware similar to conflict detection mechanisms in hard-
ware transactional memory proposals.

3. HRF0: The First Sequential Consistency for

Heterogeneous Race-free Model

The existing SC for DRF models define a data race in terms
of a single, global synchronization order; as a result, they
are unable to take advantage of synchronization scopes
available on heterogeneous platforms. To address this gap,
we propose a new class of memory consistency models
called sequential consistency for heterogeneous race-free.
In an SC for HRF model, all synchronization occurs with
respect to a subset of threads in an execution called a scope.
Practically, scopes can be defined to reflect the capabilities
of a system. In a GPGPU, there will likely be one scope for
each thread group sharing a memory.

Scopes can (and will) overlap with one another. For in-
stance, the scope containing a GPU thread group will over-
lap with at least one other scope representing all threads in
the execution. As such, threads will have to decide which
scope to use when synchronizing. Generally, they will want
to choose the smallest scope possible that includes all
threads involved in the communication. More specifically,
the choice of scope will depend on properties of the specif-
ic SC for HRF model that regulate how synchronization
from different scopes can interact with one another.

3.1 Baseline System and Architecture

Before diving into the specifics of the HRF0 model, we
will first lay down the basic assumptions about the hard-
ware and language/ISA of our target system. We describe
HRF0 in terms of a simple system first and leave generali-
zation to more complex systems to future work.

Our basic target system contains four threads and two
thread groups, as shown in Figure 3(a). Threads in a group
(t1/t2 or t3/t4) share a local cache that is backed up by a
larger, globally visible cache. All caches share the same
address space but are incoherent. Throughout this paper, we
will represent the system in Figure 3(a) using the scope
representation in Figure 3(b), which illustrates that threads
t1 and t2 (t3 and t4) belong to both a group scope S12 (S34)
and a global scope SGlobal.

For synchronization, we assume that the language and/or
ISA (the HRF0 model could represent either) provides
acquire and release operations with semantics similar to the
operations of the same name in systems implementing
release consistency [11]. We chose acquire/release syn-
chronization, rather than fence operations found in current
GPGPU models, for two reasons. First, as Adve and Hill
have shown [1], acquire/release can be generalized to other
synchronization primitives, making our analysis compatible
with other synchronization methods. Second, the HSA
foundation has indicated that future HSA-compliant devic-
es will use acquire/release synchronization [17]. Like the
HSA operations, we assume that acquire and release always
perform with respect to a particular scope and may not
always result in global visibility.

3.2 HRF0 Synchronization Model

We define the HRF0 synchronization model based on the
constraint that if two threads communicate, they synchro-
nize using operations of the exact same scope. If -- in some
sequentially consistent execution of a program -- two con-
flicting data accesses are performed without being separat-
ed by paired synchronization of identical scope, then those
accesses form a heterogeneous race. HRF0 provides con-
siderable hardware implementation flexibility, as we dis-
cuss in Section 4.

To synchronize correctly in HRF0 while still getting
good performance, programmers can follow a simple rule:
Always use the smallest scope available that includes all
threads that may see the values that will be written. One
important caveat to this rule is that all threads must use the
same scope. Thus, if a group of threads is cooperating to
perform work locally, when that work needs to be commu-
nicated to threads outside the group, all of the group
threads must perform a larger scope synchronization. Luck-
ily, in existing GPGPU programming models in which
threads execute in lockstep, this constraint may not be as
limiting as it first appears.

01: while t < num_timesteps: /* Global loop */
02: acquire(Global)
03: read ghost zone values from neighbors
04: G times do: /* Local (group) loop */
05: acquire(Group)
06: grid[id_x][id_y] = f(neighbors)
07: release(Group)
08: barrier(threads in group)
09: t += G
10: release(Global)
11: barrier(all threads)

Figure 4. Pseudo-code for a single thread in a stencil
“ghost zone” GPGPU application.

5

Figure 4 shows the code from Figure 1 correctly syn-
chronized for HRF0 implementation. We show the ac-
quire/release actions asfl explicit calls, though in an actual
implementation they may be combined with the semantics
of the barriers.

When iterating locally in the inner loop, threads avoid
slow global communication by synchronizing with respect
to their group scope and update only group memory. At the
end of a timestep, all the threads perform a global synchro-
nization to communicate boundary conditions with other
groups and (logically) flush all updates to global memory.
In the example, the program still would have been correct if
the local synchronization performed conservatively with
respect to the global scope. This important property of
HRF0 makes it possible for users to adopt the model in-
crementally by starting with an SC for DRF-compatible
program and later using scopes to improve performance.

3.3 Happens-before Order

While many programmers can successfully use their intui-
tion to write HRF0 programs correctly, experience shows
that complicated corner cases need robust formalism. To-
wards that goal, in this subsection we describe a happens-
before relation that can be used to reason rigorously about
heterogeneous races.

In HRF0, whether or not an operation happens before
another -- and, consequently, whether it forms a heteroge-
neous race -- depends on the how operations are related
through scope synchronization. Abstractly, one can think of
there being a separate order of operations for each scope in
an HRF0 execution (in contrast to a single global order in
SC for DRF). Operations are ordered in a scope if they are
ordered by the transitive closure of (a) program order, and
(b) synchronization order of acquire/release operations in
the scope in question.

Ultimately, given the observed scope orders for an exe-
cution, we can say that an operation A happens before an
operation B if A appears before B in any scope order (i.e.,
are ordered by synchronization within any single scope).

We show an example of this abstract model in Figure 5.
On the left is an execution order observed during a run of
the program; on the right are the three happens-before
scope orders relating instructions from different threads as
they appear when the program completes. In the example,
we observe that the release provides its value to release
 in scope S12’s order and release provides its value to
release in scope SGlobal’s order. When transitively com-
bined with program order dependencies, all other instruc-
tions are ordered as shown in Figure 5.

Based on those scope orders, we show examples of both
correctly synchronized conflicts and a conflict that forms a
heterogeneous race. First, in this execution, both the con-
flicting pairs - and - are synchronized properly
because they are ordered by scope orders S12 and SGlobal,
respectively. On the other hand, the conflicting pair -
forms a heterogeneous race in HRF0 because no scope
order contains both operations. Thus, in the execution, the
value observed by the load in instruction is undefined.

3.4 Formal Definitions

We formally define the SC for HRF0 model using the set
relational notation first adopted by Adve and Hill [2]:

Program Order (⃗⃗⃗⃗ ⃗): op1 ⃗⃗⃗⃗ op2 iff op1 and op2 are
from the same thread and op1 completes before op2.

Scope Synchronization Order (⃗⃗ ⃗⃗ ⃗⃗): Release op1 ap-
pears before release or acquire op2 in ⃗⃗⃗⃗⃗⃗ iff both are per-
formed with respect to scope S, access the same location,
and op1 occurs before op2.

Heterogeneous Happens-before 0 (hhb0): The union of
the irreflexive transitive closures of all scope synchroniza-
tion orders with program order:

⋃(⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗)

In this equation, represents the set of all scopes in an
execution. In this equation, the closure applies only to the
inner union and is not applied to the outer union. Heteroge-
neous Happens-before forms a partial order of execution.

Conflicting Operations: Two operations op1 and op2
conflict iff both are to the same address and at least one is
an ordinary store or a release.

Heterogeneous Race: A pair of conflicting operations
op1 and op2 forms a heterogeneous data race iff they are
not ordered by ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

Heterogeneous-Race-Free-0 (HRF0): An execution is
Heterogeneous Race-free-0 iff there are no heterogeneous
races. A program is HRF0 iff all possible sequentially con-
sistent executions of the program are HRF0.

Sequential Consistency for Heterogeneous-Race-Free-0
(SC for HRF0): A system implementation obeys the SC
for HRF0 memory model iff all executions of an HRF0
program on the system are sequentially consistent.

3.5 Analysis

Relationship to SC for DRF: When defining an SC for
HRF model, we do not aim to enable new functionality or
programming idioms beyond what is possible with existing
DRF models. We do, however, aim to open new possibili-
ties for increased performance in systems in which threads
can synchronize with each other with unequal effort while
giving programmers the tools they need to create correct
code. Towards this end, we believe all SC for HRF models
should obey two guidelines, which are met in HRF0:

Figure 5. Example of correct synchronization and a race
in HRF0. Note that happens-before is a partial order.

6

1. An SC for HRF model should be equivalent to
DRF models in the degenerate case of only one
global scope.

2. A system should be free to synchronize with larger
(more inclusive) scopes than is specified by soft-
ware at any time.

In other words, we believe that a DRF program should run
correctly on HRF hardware and an HRF program should
always run correctly on DRF hardware (on which all syn-
chronization implicitly is promoted to global scope). This
ensures an easy adoption path to HRF; existing DRF soft-
ware will continue to work, and programmers can introduce
scoped synchronization as needed for performance.

Synchronization Races: In HRF0, it possible for two
synchronization accesses (i.e., an acquire and release) to be
unordered and thus form a heterogeneous race with each
other. This is a foreign concept in SC for DRF models
because there is by definition a single order of all synchro-
nization accesses. Synchronization races can happen in
HRF0 because the model allows synchronization accesses
to perform locally in a scope without having to wait to be
ordered with other scopes. Thus, if pairs of threads from
different scopes are synchronizing with each other using
the same location but different scopes, then those synchro-
nization accesses race with each other.

Luckily, software can avoid this complexity by follow-
ing a simple best practice: When using HRF0, software
should associate a single scope with each synchronization
variable. For example, software could be constructed so
variable A is always used with scope S12, B with S34 etc. If
this practice is followed, synchronization operations will
never race with each other (though races between data
accesses can certainly still occur).

4. Example Implementation

In this section we describe a reference GPU memory im-
plementation that is compatible with HRF0. We design the
implementation for a baseline like the one in Figure 3. In
this system, groups of threads share a fast cache memory
through which they can communicate through with each
other. Further, there is a slower global memory that can be
used to hold data that does not fit in the group memory and
communicate between threads of different groups. For
simplicity, assume the global memory is DRAM, though it
could internally also contain other caches.

One can think of each of the memories in the baseline
system as belonging to exactly one of the scopes in Figure
3. In particular, the memory on the bottom belongs to the

global scope and the cache memories above that belong to a
group (i.e., S12 or S34) scope. Additionally, in Figure 6, we
show write buffers (commonly called write-combining
buffers in GPUs) between the threads and group memory.
These write buffers can be considered, for purposes of the
following description, part of an implicit local scope that is
smaller than group scope and that contains only one thread.
In an actual implementation, there may also be write buff-
ers between group and global memory, but because they
would logically belong to the group memory anyway, we
omit them for simplicity of exposition.

4.1 Invariants

The implementation obeys the HRF0 model by maintaining
three invariants:

1. Before a release completes, all prior writes have been
written into a memory belonging to the scope of the re-
lease.

2. Before an acquire completes, any memory that both be-
longs to a scope containing the thread and is part of a
scope smaller than the scope of the acquire has been in-
validated.

3. An acquire or release completes when it reads or writes
to a memory belonging to the target scope.

Together, these invariants ensure the HRF0 requirement
that if any load and store are separated by a paired ac-
quire/release to the same scope, the store will be visible to
the load. This is because the release will ensure that the
stored value is visible in the scope of the synchronization
by flushing dirty values. Likewise, the acquire will ensure
that the thread performing the load will fetch that value
from the scope of the synchronization by invalidating all
lower scope memories.

4.2 Basic Operation

The system maintains the invariants listed in Section 4.1 by
taking the following actions on memory operations:

Load: Read directly from group memory unless the ad-
dress is present in the local write buffer, in which case
bypass from the local write buffer. If the location is not
present in group memory, fetch it from global memory.

Store: Insert the write into the local write buffer.

Group Release: Empty the local write buffer, then com-
plete the store in group memory.

Group Acquire: Complete the load in group memory and
empty the local write buffer before the next load or store
performs.

Global Release: Flush all dirty data in both the local
write buffer and group memory to global memory. When
those are completed, perform the store in global memory.

Global Acquire: Flush all dirty data and invalidate all
valid data in both the thread’s write buffer and the group
memory. Perform the load in global memory.

An implementation could support the release/acquire ac-

tions in a variety of ways. In its most basic form, control-
lers could walk the caches to locate all dirty and/or valid
data. More sophisticated methods are possible, including

Figure 6. Hardware in the example implementation.

7

those that use hardware support to intelligently
flush/invalidate caches [15, 31] and those that use soft-
ware/compiler support to get the same result [9].

4.3 Possible Optimizations

While the basic operation outlined in Section 4.2 is correct
and good for developing a high-level understanding, it
leaves some possible optimizations on the table.

For example, on a global acquire, the system does not
have to wait for group memory to flush/invalidate before
proceeding; rather, it needs only to ensure that any subse-
quent load or store in program order will not perform ahead
of any flush/invalidate caused by the acquire (as previously
observed for single-scope models [11]). Also, if local
memories are managed as write-through caches (as is typi-
cal in GPU streaming caches), then the flush actions only
have to ensure that the write buffer has emptied.

In HRF0, an implementation also can selectively
flush/invalidate memories on acquire and release operations
rather than using the blunt-force method in the example. If
an implementation had the ability to distinguish reads and
writes from different threads (e.g., using thread ID tags),
the flush/invalidate actions could be filtered to affect only
the locations touched by the synchronizing thread.

4.4 Analysis

Recall that if the system had to support a single-scope DRF
model for the memory layout like the baseline in Figure 6,
the implementation would presumably either have to per-
form expensive local memory flush/invalidates on every
acquire or release, or -- to avoid the flush/invalidates --
implement a read-for-ownership coherence protocol. The
performance of the first option is likely to be poor enough
to discourage fine-grained synchronization. On the other
hand, while the second option may perform better, some
believe that implementing a coherence protocol on a GPU
would be prohibitively complex and/or expensive [19, 21].
With those considerations, the HRF0 implementation
seems to be a reasonable alternative.

5. Discussion

Hierarchical Scoping: In HRF0, threads must synchronize
with each other using identical scope. While this is sup-
ported by our vision of future GPU hardware, it may also
be overly conservative. The caches in future GPUs will
likely be hierarchical, as they are in our example imple-
mentation. With this hierarchy, hardware could support an
SC for HRF model that permits thread synchronization
using different, but overlapping, scopes. For example, the
hardware in Figure 6 would support synchronization be-
tween one thread in a group that releases to global scope
and another thread in the same group that acquires from
group scope. Synchronization among different scopes may
not generalize, however, and requires careful consideration.
Dynamic Scoping: So far, we have assumed that scopes are
defined statically by the system to reflect an implementa-
tion’s memory hierarchy. In this case, the specific scopes
available to a thread will depend on where it executes (i.e.,
what thread group it belongs to). This decision works well
when the programming model reflects the physical re-
sources, as in current GPGPU languages.

However, if an SC for HRF model were applied to a
more general programming model like C++, using static
scoping could be too restrictive. In that case, it is possible
to allow scopes to be defined dynamically by binding
threads that communicate frequently together at run-time. If
this is allowed, the application will likely need a run-time
layer than maps software-defined scopes to physical re-
sources in the system. For example, a run-time thread
scheduler could map threads in the same dynamically de-
fined scope to the same thread group on a GPU.
DRF + Scope -- Another View: While we have presented
SC for HRF as a new class of memory models, an alterna-
tive view is the SC for HRF models are SC for DRF with
races defined to include scope. Both are valid; we choose to
present this work as a new model to emphasize the fact that
synchronization scopes introduce an entirely new class of
races that do not exist in prior synchronization models.
Working with CPU Threads: In our descriptions so far, we
have ignored the presence of cache-coherent CPU threads
that may share a global scope with heterogeneous threads.
The CPU threads could complicate the system because, in
most cases, accesses emanating from CPU threads will
need to respect the semantics of a legacy memory model
(e.g., x86-TSO). Luckily, though, the SC for HRF models
are weak enough that most existing CPU memory models
will be strictly stronger and the two can safely co-exist.
Dealing with Races: The HRF0 model does not define
semantics in the presence of a heterogeneous race. There
are several alternate options a model could choose to han-
dle behavior in racey programs. First, any SC for HRF
model can support a memory model exception that is raised
if an implementation detects that sequential consistency is
violated, á la DRFx [25]. To ease implementation complex-
ity, we advocate making the exception semantics best-
effort, so doing nothing is a valid implementation. Second,
like the Java memory model, an SC for HRF could provide
some basic guarantees like write causality for racey code.
Any such guarantees should be thoughtfully considered,
however, because previous efforts have proven more diffi-
cult than first imagined [32].

6. Related Work

Hechtman and Sorin have recently posited that GPU sys-
tems should implement sequential consistency, and have
shown that the performance of an SC GPU is comparable to
one implementing a weak model [16]. Their analysis, how-
ever, assumes a baseline GPU that implements read-for-
ownership coherence and does not take interaction with a
CPU core into account. In this paper, we make different
assumptions, and propose SC for HRF as a class of models
to reason about consistency in current and future GPUs.

Scoped synchronization is not limited to just GPU sys-
tems. The Power7 CPU system uses scoped broadcasts in
its coherence protocol [18]. Though this scoping is not
exposed to the programmers, it nonetheless represents the
trend toward scoped synchronization in modern hardware.

One could argue that message-passing models like MPI
provide scoped consistency by allowing threads to explicit-
ly specify senders and receivers [12]. Of course, message-
passing models do not use shared memory, and as a result
are difficult to use with algorithms involving pointer-based
data structures like linked lists. In addition, shared memory
programs are easier for compilers to optimize because in

8

MPI, compilers must have semantic knowledge of the API
to perform effective operation reordering [10].

Recently, there has been an effort in the high-
performance community to push programming models that
make use of a partitioned global address space (PGAS).
These include languages like x10 [7], UPC [5], and Chapel
[6]. Like SC for HRF models, these PGAS languages pre-
sent a single shared address space to all threads. However,
not all addresses in that space are treated equally. Some
addresses can be accessed only locally while others can be
accessed globally but have an affinity or home node. As a
result, PGAS programs still explicitly copy data between
memory regions for high performance. In contrast, in an SC
for HRF model, a particular address is not bound to a home
node and there is no need for application threads to copy
data explicitly between memory regions.

There has recently been work to on coherence alterna-
tives for shared memory in GPU architectures. Cohesion is
a system for distinguishing coherent and incoherent data on
GPU accelerators [20]. The incoherent data has to be man-
aged by software with explicit hardware actions like cache
flushes. SC for HRF models, on the other hand, abstract
away hardware details for programmers and rely on an
implementation to manage memory resources.

7. Conclusions

In this paper, we present a new class of consistency models
called sequentially consistent for heterogeneous race-free
that allow programmers to reason about scoped synchroni-
zation present in heterogeneous systems. We present the
first SC for HRF model, called HRF0, that requires correct
synchronization to use identical scope. We have shown
how programmers can use HRF0 to build correct high-
performance software and how designers can build hard-
ware that supports the model. Our preliminary analysis
shows that HRF0 may constrain software unnecessarily,
and thus future work will investigate more permissive
models and their effects on system designs.

References

[1] Adve, S.V. and Hill, M.D. 1993. A unified formalization of four

shared-memory models. Parallel and Distributed Systems, IEEE

Transactions on. 4, 6 (1993), 613–624.

[2] Adve, S.V. and Hill, M.D. 1990. Weak ordering—a new defini-
tion. Proceedings of the 17th annual international symposium on

Computer Architecture (New York, NY, USA, 1990), 2–14.

[3] AMD 2012. AMD Accelerated Parallel Processing OpenCL
Programming Guide.

[4] Boehm, H.-J. and Adve, S.V. 2008. Foundations of the C++

concurrency memory model. PLDI (Tuscon, AZ, Jun. 2008), 68–
78.

[5] Carlson, W.W. et al. 1999. Introduction to UPC and language

specification. Center for Computing Sciences, Institute for De-
fense Analyses.

[6] Chamberlain, B.L. et al. 2007. Parallel programmability and the

chapel language. International Journal of High Performance
Computing Applications. 21, 3 (2007), 291–312.

[7] Charles, P. et al. 2005. X10: an object-oriented approach to non-

uniform cluster computing. ACM SIGPLAN Notices (2005), 519–
538.

[8] Che, S. et al. 2009. Rodinia: A benchmark suite for heterogeneous

computing. IEEE International Symposium on Workload Charac-
terization, 2009. IISWC 2009 (Oct. 2009), 44 –54.

[9] Choi, L. et al. 1996. Techniques for compiler-directed cache

coherence. IEEE Parallel Distributed Technology: Systems Appli-
cations. 4, 4 (Dec. 1996), 23 –34.

[10] Danalis, A. et al. 2009. MPI-aware compiler optimizations for

improving communication-computation overlap. Proceedings of
the 23rd international conference on Supercomputing (2009),

316–325.

[11] Gharachorloo, K. et al. 1990. Memory consistency and event
ordering in scalable shared-memory multiprocessors. Proceedings

of the 17th annual International Symposium on Computer Archi-

tecture (1990), 376–387.
[12] Gropp, W. et al. 1999. Using MPI: portable parallel programming

with the message passing interface. MIT press.

[13] Guiady, C. et al. 1999. Is SC+ILP=RC? Proceedings of the 26th
International Symposium on Computer Architecture, 1999 (1999),

162 –171.

[14] Gupta, K. et al. 2012. A Study of Persistent Threads Style GPU
Programming for GPGPU Workloads. Proceedings of Innovative

Parallel Computing (InPar ’12) (May. 2012).

[15] Hammond, L. et al. 2004. Transactional memory coherence and

consistency. Proceedings of the 31st annual international sympo-

sium on Computer architecture (2004), 102.

[16] Hechtman, B.A. and Sorin, D.J. 2013. Exploring Memory Con-
sistency for Massively-Threaded Throughput-Oriented Processors.

Proceedings of the 40th International Symposium on Computer

Architecture (ISCA) (Tel Aviv, Israel, Jun. 2013).
[17] HSA Foundation 2012. Heterogeneous System Architecture: A

Technical Review.
[18] Kalla, R. et al. 2010. Power7: IBM’s next-generation server pro-

cessor. Micro, IEEE. 30, 2 (2010), 7–15.

[19] Keckler, S.W. et al. 2011. GPUs and the Future of Parallel Com-
puting. IEEE Micro. 31, 5 (Oct. 2011), 7 –17.

[20] Kelm, J.H. et al. 2010. Cohesion: a hybrid memory model for

accelerators. Proceedings of the 37th annual international sympo-
sium on Computer architecture (New York, NY, USA, 2010),

429–440.

[21] Kelm, J.H. et al. 2009. Rigel: an architecture and scalable pro-
gramming interface for a 1000-core accelerator. Proceedings of

the 36th annual international symposium on Computer architec-

ture Pages (Austin, TX, Jun. 2009), 140–151.
[22] Krishnamoorthy, S. et al. 2007. Effective automatic parallelization

of stencil computations. ACM Sigplan Notices (2007), 235–244.

[23] Lamport, L. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transactions on

Computers. C-28, 9 (Sep. 1979), 690 –691.

[24] Manson, J. et al. 2005. The Java memory model. Proceedings of
the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (New York, NY, USA, 2005), 378–391.

[25] Marino, D. et al. 2010. DRFX: a simple and efficient memory
model for concurrent programming languages. Proceedings of the

2010 ACM SIGPLAN conference on Programming language de-

sign and implementation (New York, NY, USA, 2010), 351–362.
[26] Meng, J. and Skadron, K. 2009. Performance modeling and auto-

matic ghost zone optimization for iterative stencil loops on GPUs.

Proceedings of the 23rd international conference on Supercompu-
ting (2009), 256–265.

[27] Munshi, A. et al. 2011. OpenCL programming guide. Addison-

Wesley Professional.

[28] Nickolls, J. et al. 2008. Scalable parallel programming with

CUDA. Queue. 6, 2 (2008), 40–53.

[29] NVIDIA Corporation CUDA 4.3 C Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[30] NVIDIA Corporation 2012. Parallel Thread Execution ISA Ver-
sion 3.1.

[31] Pfister, G.F. et al. 1985. The IBM research parallel processor

prototype (RP3): Introduction and architecture. Proc. Int. Conf.
Parallel Processing (1985), 764–771.

[32] Pugh, W. 1999. Fixing the Java memory model. Proceedings of

the ACM 1999 conference on Java Grande (1999), 89–98.

