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Abstract

In this paper, we propose a low-cost fault tolerance tech-
nique for microprocessor multipliers, both non-pipelined
(NP) and pipelined (P). Our fault tolerant multiplier de-
signs are capable of detecting and correcting errors, diag-
nosing hard faults, and reconfiguring to take the faulty sub-
unit off-line. We utilize the branch misprediction recovery
mechanism in the microprocessor core to take the error de-
tection process off the critical path. Our analysis shows that
our scheme provides 99% fault security and, compared to a
baseline unprotected multiplier, achieves this fault tolerance
with low performance overhead (5% for NP and 2.5% for P
multiplier) and reasonably low area (38% NP and 26% P)
and power consumption (36% NP and 28.5% P) overheads.

1 Introduction

The common trend towards smaller feature sizes en-
ables increased performance and transistor density
for IC manufacturers. However, smaller feature sizes
also increase the susceptibility of electronic circuits to
manufacturing defects, process variability, and in-field
wear-out [7]. Effects such as electromigration [18] and
thermal scaling [20] will become more prevalent as
wire sizes continue to shrink [16]. Moreover, shrinking
gate-oxide thickness results in increased stress on the
oxide layer, leading to gate oxide breakdowns, partic-
ularly for weak oxide layers. Since the lifetime of the
oxide layer depends on its initial purity [17], it is un-
likely that even costly test techniques, such as burn-in
[6] or high voltage stress [9], will capture all transis-
tors with weak oxide layers. As a result, it is increas-
ingly likely for circuits in commodity products (such
as microprocessors) to fail before they become obso-
lete.

For commodity microprocessors with small profit
margins, hard fault tolerance schemes have tradition-
ally been considered too costly. However, with the
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changing dynamics of failure mechanisms, it is in-
creasingly inefficient to discard chips due to a small
number of hard faults in the logic circuits. Therefore,
designers face a new challenge of providing some de-
gree of hard fault tolerance in their circuits while min-
imizing the hardware, performance, and power con-
sumption overheads.

Tolerating failures in circuits at various levels of hi-
erarchy, such as the system level, functional unit (e.g.,
adders, multipliers) (FU) level, or sub-FU level, is an
intensely researched area in the literature. As a re-
sult, there is a plethora of fault tolerance techniques
[8, 5, 3, 12] which we will discuss in greater detail in
Section 2. However, direct application of these tech-
niques to multipliers in commodity microprocessors
is limited due to two major concerns. First, a fault
tolerance technique in this domain needs to incur ex-
tremely low performance overhead, usually preclud-
ing the use of techniques that require time redun-
dancy. Second, both area and power consumption
overheads need to be reasonably small, preventing the
use of techniques that replicate entire units.

In this paper, we present a recursive, fault tolerant
32-bit multiplier in the context of modern micropro-
cessors. While not heavily utilized, multipliers are
typically large, singleton functional units within the
microprocessor core, the correctness of which deter-
mines the correctness of the overall system. To min-
imize the performance overhead, we utilize the pro-
cessor’s built-in branch misprediction recovery mech-
anism which enables us to take the error detection
circuit off the critical path. In order to make our
technique applicable to pipelined designs and to keep
the delay overhead low, we use a modulo-3 (mod-3)
checker [14, 13] for error detection. We propose a di-
agnosis scheme which re-uses the built-in reconfigura-
tion capability.

We provide detailed analyses of fault tolerance
overheads (i.e., hardware, power, and performance),
fault detection capability, and single points of failure
for the proposed scheme and compare them to prior
work. Our main contributions in this work are:

• We take error detection off the critical path by re-
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using existing capabilities in the microprocessor,
and we thus enable extremely low performance
overhead.

• We keep the hardware overhead reasonably low
by re-using the existing reconfiguration capability
for diagnosis.

• We evaluate the fault tolerant design in terms of
hardware, power consumption, and performance
overhead. We also provide a detailed analysis of
fault security based on transistor level faults and
the single fault-at-a-time assumption.

2 Related Work

Tolerating failures in circuits at various levels of hier-
archy is an intensely researched area in the literature.
In this section, we will discuss several previously pro-
posed fault tolerance approaches for arithmetic func-
tional units (FUs).

Some techniques provide protection at the FU-level,
including triple modular redundancy (TMR). TMR is
an effective technique, but it requires the triplication
of the protected FU and a voter circuit. Although
the delay overhead of TMR is generally very low, the
hardware and power consumption overheads are over
200%.

Sub-FU reconfigurability has also been studied [8,
5, 3]. REMOD [5] has been proposed as a general
framework to provide detection, diagnosis, and recon-
figuration for arithmetic units with multiple identical
submodules. REMOD uses a combination of time and
hardware redundancy. After the functional operation
is finished, a check operation is started wherein the
functional operation of each submodule is re-run by
another submodule and the results compared. The
check operation is done by shifting the functional in-
puts of each module in a circular fashion through mul-
tiplexers. For diagnosis, the complete operation is
shifted once again. This dual shifting effectively en-
sures that the functional operation of each submod-
ule is rerun three times by disjoint hardware, thus en-
abling the identification of the faulty module.

Johnson et al. [8] divide a 32-bit adder into two
16-bit blocks, and use a time redundancy-based tech-
nique for fault detection. The 16-bit blocks of the
adder perform each operation twice, once with func-
tional inputs and once with the same operands ro-
tated. The operand rotating technique was further im-
proved by Townsend et al. [19] to reduce the area over-
head. Mokrian et al. propose a hybrid multiplier ar-
chitecture [12]. Four Booth-encoded 32-bit multipli-
ers are connected as a recursive multiplier to form a
64-bit multiplier. If the multiply operation is single-
precision, the operation is run on three 32-bit units,
enabling detection and diagnosis. No detection is

provided for the double precision operations. Chen
and Chen present a serial fault tolerant multiplier [3]
based on time redundancy. Fault tolerance is provided
by circularly shifting the inputs and recomputing. The
timing overhead is 100%, and the area overhead is not
reported.

Most prior fault tolerance techniques in the context
of arithmetic FUs use a combination of time and hard-
ware redundancy. There are several drawbacks of re-
lying on time redundancy wherein the functional units
are re-used to perform the check operation. First, the
check operation cannot be taken off the critical path.
Thus, such techniques generally incur a high delay
overhead. Second, time-redundancy based techniques
cannot be easily applied to pipelined FU designs due
to the re-use of FUs during the check operation. In
this work, we aim at addressing these issues through
two mechanisms. First,we allow the microprocessor
to speculatively use the results from the multiplier and
allow the multiplier to start a new operation before the
check operation is complete, thereby taking this oper-
ation off the critical path of execution. Second, we pro-
vide disjoint hardware to perform the check operation
to make our technique applicable to pipelined multip-
lier designs.

3 Fault Tolerant Multiplier
Multiplication is a complex operation for circuits to ex-
ecute quickly, requiring the weighted addition of n2

partial products for an nxn multiplication. Many se-
rial multipliers can accomplish this operation with lit-
tle area and power consumption but have a high la-
tency. As an alternative, there exist many styles of par-
allel multipliers, such as tree (e.g., Dadda/Wallace),
array, or recursive multipliers, that add partial prod-
ucts simultaneously. Among these, we have selected a
recursive baseline multiplier over a tree or array based
multiplier. The reasons include:

• Recursive multipliers are easy to lay-out due to
their highly regular structure.

• Recursive multipliers can easily be decomposed
into modular blocks to create reconfigurable
units.

• Recursive multipliers (O(log(n)) delay,
O(n2log(n)) circuit complexity) have compa-
rable performance to Dadda/Wallace multipliers
(O(log(n)) delay, O(n2log(n)) circuit complexity),
and they are faster than array multipliers (O(n)
delay, O(n2) circuit complexity) [4, 10].

Recursive multipliers execute by breaking the op-
eration into four smaller multiplications, as illustrated
mathematically in Equation 1.
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Figure 1: (a) Baseline 32-bit recursive multiplier. Note that 8-bit multipliers are also recursive. (b) Protected 32-bit
recursive multiplier. The extra logic over the baseline multiplier is denoted with gray color. The unprotected areas
are denoted with dashed borders.
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Each input operand is divided into two parts as
high (H) and low (L) bits. The breakdown of the multi-
plication into smaller multiplication operations can be
applied recursively until multiplication units are small
enough to be efficiently implemented using high per-
formance logic.

3.1 Baseline Unprotected Multiplier
Figure 1-a shows the block diagram of the baseline
unprotected recursive multiplier (illustrated down to
the 8-bit level). The 8-bit multipliers are further bro-
ken into 4 4-bit multipliers. A compressor circuit
performs a weighted addition of the recursive prod-
ucts. The compressor circuit is composed of fast
carry-propagating 4:2, 3:2, and 2:2 compressor build-
ing blocks. We implement both a non-pipelined (NP)
and a pipelined (P) version of the baseline multiplier.
We set the pipeline depth of our multiplier to eight cy-
cles in order to match its cycle time to that of the pro-
cessor model, which we will discuss in greater detail
in Section 4. To enable a detailed analysis at the cir-
cuit level, we generate our baseline multiplier using
the high performance logic designs presented in [11].

3.2 Fault Tolerant Multiplier
Fault tolerance generally requires three features: spare
reconfigurable units (RUs) and a reconfiguration
mechanism (3.2.1), an error detection mechanism to

catch the erroneous output (3.2.2), and a diagnosis
mechanism to find the source of the error (3.2.3). In
the literature, there are many techniques for imple-
menting each of the detection, diagnosis, and reconfig-
uration components required for fault tolerance. Our
main contribution is focusing on an application do-
main (microprocessors) and utilizing the built-in ca-
pabilities of this application domain to develop an ef-
ficient design.

3.2.1 Reconfigurable Units and Reconfigurability

In our recursive multiplier, the RU can be at any level
of hierarchy (i.e., 4-bit level, 8-bit level, 16-bit level).
The selection of the RU size is a design decision.
When the granularity of the RU is small, it is possi-
ble to map out only a small portion of a complete cir-
cuit while keeping most of the fault-free circuitry un-
touched. However, finer granularity results in larger
area and performance overheads due to the necessity
for more multiplexers and wires to enable reconfigura-
tion. For microprocessors, performance overhead is a
major concern. Therefore, we have selected the 16-bit
multiplier module as the RU to minimize the perfor-
mance overhead.

Figure 1-b illustrates the 32-bit multiplier with the
spare RU and multiplexers. 2x1 multiplexers are
added at the inputs and outputs of the n

2
-bit RUs (ex-

cept for the spare RU which needs 3x1 multiplexers
at the input) to enable reconfiguration. When an RU
is mapped out, the inputs of that RU are connected to
ground to decrease the power consumption. The spare
RU needs 3x1 multiplexers at its input since for each
operand both high and low bits and a ground connec-
tion are required.

The top level compressor circuit remains unpro-
tected in this configuration. Due to its small size rela-
tive to the rest of the circuit, we find this to be an ac-
ceptable design decision. Adding a spare compressor
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unit and using multiplexers to select that spare unit
would not provide a better fault tolerance capability
since the multiplexers would be of comparable size to
the compressor circuit itself.

To keep the multiplication instruction latency con-
stant after reconfiguration, we use the latency of 3x1
multiplexers instead of 2x1 multiplexers when calcu-
lating the delay overhead.

3.2.2 Error Detection and Correction

One way of providing an error detection mechanism
is the use of an invariant for the circuit. Modulo arith-
metic provides such an invariant for the multiplication
operation, since:

(X)modA · (Y )modA = (X · Y )modA (2)

The modulo checker that utilizes this property in-
cludes two 32-bit modulo generators (input modulo
generators), a 64-bit modulo generator (output mod-
ulo generator), a modulo multiplier, and a compara-
tor. While any number A can be used as the base num-
ber, setting it to (2n ± 1) enables us to break down the
operands into n-bit slices and compute their modu-
los independently, leading to a low complexity design
[14, 13].

We analyzed in detail the effect of using a modulo
checker with A=3 and a modulo checker with A=7
for our multiplier design in terms of area overhead
and fault coverage. We determined that the modulo
checker with A=3 is preferable since it provides almost
the same fault coverage as the modulo checker with
A=7 with much smaller area. We found that the fault
escape probability for the modulo checker with A=3
is 1% for the complete 32-bit multiplier design. The
details of this calculation are given in Section 4.1.

A mod-3 generator is a tree structure consisting of
2-bit adders. Our implementation is similar to the
one proposed by Piestrak [14]. The modulo multip-
lier calculates the product of the mod-3 of the inputs,
which is a 2-bit number. Finally, the 2-bit mod-3 equal-
ity checker, which is a simple comparator, checks the
consistency of calculated mod-3 values. Note that the
equality checker is aware of the double representation
of 0. A schematic showing this mechanism is given in
Figure 2. Due to space constraints, the mechanism is
shown for an 8-bit multiplier.

For error correction, we utilize the built-in branch
misprediction recovery mechanism in modern micro-
processors. When a branch instruction is encountered,
the microprocessor first guesses the outcome of this in-
struction and continues executing speculatively with-
out committing until the branch outcome is computed.
If the outcome was guessed incorrectly, all instruc-
tions after the branch instruction are removed from
the pipeline and fetch starts from the actual branch
target instruction. We treat all multiply instructions
in the same manner as branch instructions. We let

Figure 2: Detection mechanism for an 8-bit multiplier

the multiplier complete its operation and make its re-
sults immediately available before the modulo checker
completes. However, we only commit the multip-
lier results after the checker completes. If the checker
detects an error, the recovery mechanism flushes the
pipeline starting with the multiply instruction.

At this point, we would begin diagnosis except that
some of the detected errors may be due to transient
errors, the rate of which is also increasing as device di-
mensions shrink [16]. For a hard fault tolerance mech-
anism, it is imperative to prevent transient faults from
initiating an unnecessary reconfiguration. Our detec-
tion mechanism avoids such unnecessary reconfigura-
tion through multiple passes. If an error is detected, a
counter associated with the multiplier is incremented
and the microprocessor’s recovery mechanism is ac-
tivated. After recovery, the same operands will en-
ter the multiplier, causing the same erroneous result
in case of a hard fault, and producing the correct re-
sponse in case of a transient fault. If the correct result
is encountered the second time, the error is considered
transient, the counter is reset, and the operation con-
tinues without reconfiguration. To allow for adequate
time for the propagation of transient errors, we use a
2-bit counter, which triggers diagnosis if the multipli-
cation produces an erroneous response a third time.

3.2.3 Diagnosis

To prevent the modulo checker from being a SPF, upon
entering the diagnosis, we first test the checker by us-
ing its inherent redundancy. The 64-bit output modulo
generator is composed of two 32-bit modulo genera-
tors and a small adder circuit. Thus, we can switch the
two 32-bit input modulo generators and the 64-bit out-
put modulo generator by adding a small redundant 2-
bit adder. This small adder enables the usage of the
two 32-bit input modulo generators as a 64-bit out-
put modulo generator. In this way, we can calculate
the mod-3 value of the two operands as well as the
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product twice with non-overlapping hardware. If the
checker is not faulty, the modulo results are expected
to match for both passes. A non-matching result for
any of the operands or the output is considered to
show a possible hard fault in the checker. If the results
differ, we perform this test a second time to account for
transient faults. If the check fails for a second time in a
row, the modulo checker is assumed to be faulty and it
is disabled. The multiplier continues operating with-
out a fault tolerance mechanism. We could instead re-
configure the circuit to re-use the checker. However,
that would add complexity, more hardware and power
overhead, so we have decided not to use this option.
In a mission critical system, this option can be consid-
ered.

For diagnosing the faulty RU, we propose a scheme
that re-uses our reconfiguration capability. After re-
covering the pipeline, the multiply instruction re-
executes with the same operands. Thus, by rotating
which RU is the spare before each recovery and re-
execution, we can systematically diagnose which RU
is faulty. The intuition behind this approach is that if
an error is observed for a given spare configuration,
then the RU used as a spare on that execution does not
contain the fault under single fault assumption. Diag-
nosis incurs a one time penalty of at least one and at
most four pipeline flushes. Because hard faults rarely
occur, the effect of diagnosis on performance is negli-
gible.

To implement this diagnosis algorithm, we intro-
duce five extra bits of state. These bits, collectively
labeled the fault bits, identify the current known fault
status of each RU. At the start of diagnosis, all RUs
are assumed to be faulty, and thus all the fault bits are
set. When there is an error at the multiplier’s output,
the bit corresponding to the spare RU is cleared. This
process repeats until only one bit remains unchanged.
The RU whose fault bit was not cleared is identified as
the faulty RU.

Although unlikely, it is possible for this scheme to
produce an incorrect diagnosis. A transient fault that
occurs on a cycle when the faulty RU is mapped out
can result in the diagnosis algorithm incorrectly iden-
tifying a fault-free RU as faulty. While the probability
of this occurring is small, we can minimize it by mak-
ing the diagnosis mechanism a multistage scheme.
After the first diagnostic pass completes, we set a
justMappedOut bit that indicates that our scheme has
made an initial guess. We then run a second diagnos-
tic pass and identify the faulty RU. If the results dif-
fer, we conclude that a transient error has invalidated
our diagnosis process and restart. Otherwise, a per-
manent reconfiguration bit is set at the end of the run.
If a hard fault is again identified in the multiplier, then
the entire multiplier is deemed unrecoverable. While
this multistage optimization does not completely elim-

inate susceptibility to transient faults, we assume that
the probability of a transient negatively impacting di-
agnosis twice in a row is effectively zero. A flowchart
for the operation of error detection, correction, and di-
agnosis is given in Figure 3.

4 Experimental Evaluation
There are four goals of this evaluation:

• We want to show that the fault escape probability
of our modulo checker for transistor level faults is
very low (Section 4.1).

• We want to demonstrate that the unprotected area
in our design is low and comparable to that of
other fault tolerance techniques with much higher
area and power overhead (Section 4.2).

• We want to show that the area and power over-
heads of our design are low compared to fault tol-
erance techniques with similar performance over-
head. Finally, we want to show that the perfor-
mance overhead of our design on a modern com-
modity microprocessor’s run-time is very low
(Section 4.3).

In most of the prior fault tolerance approaches
for functional units, time redundancy has been used
for error detection. In order to compare our design
with previously proposed designs with similar area
and power consumption overhead, we apply the gen-
eral technique described in REMOD [5] to our recur-
sive multiplier. In order to enable a fair compari-
son, we consider the same level of fault tolerance: the
REMOD-based design also tolerates one fault at the
16-bit multiplier level and leaves the top level com-
pressor circuit unprotected.

4.1 Fault Escape Probability
In our analysis of fault escape rates, we use transistor-
level fault models and HSpice simulations with the
0.18µm process technology parameters at the circuit
level. The transistor-level fault models include source-
gate short, drain-gate short, source-drain short, bulk-
gate short, source open, gate open and drain open.
We obtain fault escape probabilities in a hierarchical
manner. We simulate each non-modular low-level
building block (i.e., the 4-bit multiplier, the compres-
sor units) for all possible inputs and for all faults.
From these simulations, we obtain input fault tables
for these building blocks. We then propagate the in-
formation hierarchically using behavioral models un-
der the single hard-fault assumption. Our goal is to
compute what percentage of hard faults, once excited,
is detectable when they cause an error. We assume that
the inputs are uniformly distributed.

Our analysis of the 4-bit multiplier shows that
99.5% of its faults result in a change of the mod-3 value
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Figure 3: Error detection, diagnosis and correction mechanism flow-chart. Normal operation is shown in gray.

of its output when it contains an error. Note that this
fault coverage is circuit dependent. By the single fault
assumption, only one of the 4-bit multipliers can be
faulty at a time. This error will be propagated to the
output of the 32-bit multiplier by the following obser-
vation.

Assume that at the 8-bit multiplier level, the two 8-
bit inputs are given as XHXL and YHYL, where XH ,
XL, YH and YL correspond to the 4-bit slices of the
two inputs. The 4-bit multipliers then will generate
the products XLYL, XLYH , XHYL, and XHYH . Also,
let us denote the output of the 8-bit multiplier by P8×8.
The behavioral model of the compressor at the 8-bit
multiplier level is the following:

P8×8 =XHYH · 28 + (XLYH + XHYL)·

24 + XLYL (3)

The mod-3 value of this product is:

(P8×8)mod3 =(XHYH)mod3 · (28)mod3+

(XLYH + XHYL)mod3·

(24)mod3 + (XLYL)mod3 (4)

Since (2n)mod3 ≡ 1 for even n, both 28 and 24 equal
1 in mod-3. Then the equation reduces to,

(P8×8)mod3 =(XHYH)mod3 + (XLYH+

XHYL)mod3 + (XLYL)mod3 (5)

Since each product XLYL, XLYH , XHYL, and
XHYH is generated by a separate multiplier, there is
no single fault that can cause an error in more than one
of these products. Then, if a fault changes the mod-
3 value of the 4-bit multiplier output, it will change
the mod-3 value of the 16-bit multiplier output. This
fact can be used recursively to conclude that any fault
that changes the mod-3 value of the 4-bit multiplier
result will propagate to the 32-bit output and will be
detected by the mod-3 checker. Thus, the fault escape
probability for the faults occurring in the 4-bit multip-
lier module is only 0.5%.

To analyze the compressor circuit, we can use the
hierarchy in a similar way. Compressor circuits at
any level (8-bit multiplier, 16-bit multiplier or 32-bit
multiplier) are composed of 3 different compressor
building blocks: 4:2, 3:2, and 2:2. Each of these build-
ing blocks generates only one output bit, and they are
connected in the form of a chain through carry signals.
Because mod-3 numbers are 2-bit numbers, we can
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Figure 4: Compressor building blocks are grouped as
2-bit slices for HSpice simulations. An example of a
2-bit slice is shown in gray. The weights of the output
bits are shown below the blocks.

partition the whole compressor circuit into 2-bit slices,
as shown in Figure 4. In this way, each slice will gen-
erate a 2-bit part of the output. Since (2n)mod3 ≡ 1 for
even n, each 2-bit slice has the same weight for mod-3
calculation, and these slices can be added to obtain the
overall mod-3 of the output.

Each 2-bit slice can change its own output bits (PH ,
PL) and its carry-out bits (COUT1,COUT2). Thus, the
contribution of each 2-bit slice to the mod-3 of the out-
put is:

(PL + 2 · PH + 4 · (COUT1 + COUT2))mod3 (6)

which can be reduced to

(PL + 2 · PH + COUT1 + COUT2)mod3 (7)

Thus, each 2-bit slice can change the output without
changing the mod-3 of the output only if its contribu-
tion (PL + 2 · PH + COUT1 + COUT2)mod3 does not
change.

In order to find the fault escape probability of the
compressor circuits, the building blocks are simulated
exhaustively - as described above - in slices of two,
and the probability that the above mentioned situation
can happen is calculated for each different slice. Then,
the overall fault escape probability of a compressor cir-
cuit is found as the weighted average of the individual
probabilities. Areas (approximated by the total num-
ber of transistors) of the 2-bit slices are used as their
weights. The fault escape probabilities of compressor
circuits are given in Table 1, where Compressor-X de-
notes the compressor circuit in an X-bit multiplier.

Errors due to multiplexer gates can be detected with
100% probability since an error that changes its out-
put means a single bit-flip at the output of the mul-
tiplexer, which in turn corresponds to a bit-flip at
the input of the compressor or the multiplier block.
Any single bit-flip at the output can be detected with
100% probability as described by Equations 3-5. Simi-
larly, faults in buffers (and in latches for the pipelined
multiplier) can be detected with 100% probability.

Table 1: Fault Escape Probabilities (FEP)

Frac. of circuit (%) FEP (%)

Circuit NP P NP P

Compressor-8 15.2 10.8 3.82
Compressor-16 7.7 5.5 4.16
Compressor-32 3.1 2.2 4.34
Mult4x4 65 46.3 0.5
Other 9 35.2 0.0
Overall Mult. 100 1.27 0.97

To sum up, a mod-3 checker can miss a small frac-
tion of faults in the compressor circuit and the 4x4
multiplier circuit. A weighted average of all probabil-
ities yields an overall fault escape probability of 1.3%
and 1% for the complete 32-bit NP- and P-multiplier
designs, respectively.

For the REMOD-based design, the fault escape
probability up to the 16-bit multiplier level is zero
since the multiply operation itself is checked. How-
ever, the top level compressor has 100% fault escape
probability (i.e. any fault that results in an error will go
undetected). Thus, the overall fault escape probability
of the REMOD-based design is given by the area frac-
tion of the top-level compressor circuit: 3.1%.

4.2 Single Point of Failure Analysis
Our design can protect all 16-bit multipliers within the
32-bit multiplier. However, the top level compressor
circuit and multiplexers are unprotected and they con-
stitute single point of failures, i.e. a fault in these com-
ponents will make the entire multiplier unusable. In
addition, some parts of the modulo-3 checker (mod-
3 multiplier and mod-3 comparator) are also single
points of failure. In order to enable fair comparisons
with respect to the baseline multiplier and other tech-
niques, we first calculate the total number of transis-
tors that are single points of failures. We then calcu-
late what fraction of area of the baseline multiplier these
single points of failures correspond to. We denote this
percentage by SPF. The SPF for the baseline multiplier
is 100%.

Table 2 compares the SPF of our design to triple
modular redundancy (TMR), full duplication (with-
out a diagnosis mechanism), and the REMOD-based
scheme. Our analysis shows that the SPF of
our multiplier is 14% (12%) for the non-pipelined
(pipelined) design.

The SPF of the REMOD-based scheme stems
from the top-level compressor circuit, multiplexers to
switch the inputs, and the comparator circuits to com-
pare partial products. Since the total bit width of the
partial products is larger than the modulo of the prod-
uct, the overall comparison circuit is larger, resulting
in slightly larger SPF than our design. The 8% SPF of
the TMR multiplier stems from the majority voter cir-
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Table 2: Single Point of Failure Analysis Results. All
percentages are based on transistor count

Fraction of Hardware
Unprotected Overhead

Area (%) (%)

Circuit NP P NP P
Our Multiplier 14% 12% 38% 26%
REMOD 16% N/A 36% N/A
TMR 8% 5% 208% 205%
Duplication 2% 2% 102% 102%

cuit. In the full duplication case, the 2% SPF is due to
input and output multiplexers, assuming a cold spare
is implemented.

Our multiplier has a slightly smaller SPF compared
to the REMOD-based scheme, which has similar area
overhead and much higher performance degradation
(discussed in Section 4.3). Moreover, our technique
does not have much higher SPF than TMR, which has
high area and power consumption overheads. Al-
though the SPF of the duplication scheme is lower,
such a scheme can only detect and reconfigure, but
cannot diagnose which unit is faulty.

4.3 Performance, Hardware, and Power

Fault tolerant schemes incur hardware, performance,
and power consumption overheads.
Hardware: The details of the hardware overhead of
our fault tolerant multiplier are in Table 3. The largest
overhead is due to the reconfiguration logic which in-
cludes the spare RU. The error detection circuit is 11%
of the baseline multiplier. The area overhead of the di-
agnosis mechanism is extremely low due to the re-use
of the reconfiguration capability during the diagnosis
process.
Performance: The delay overhead of our fault toler-
ance mechanism, as shown in Table 4, is due to the
multiplexers on the critical path. To evaluate tim-
ing and power overheads, we use HSpice simulations
with 0.18µm process technology parameters. For the
REMOD-based scheme, the delay overhead mainly
arises from the recomputation of the 16-bit multiplica-
tions. This operation corresponds to 53% of the overall
multiplier delay. For the REMOD-based scheme, we

Table 3: Hardware Overhead for Our Scheme

Modules Hardware
Overhead

Mechanism NP P

Reconfig. Mux & spare unit 26.6% 17.7%
Error Det. Mod-3 checker 10.8% 7.8%
Diagnosis Control logic 0.7% 0.5%
Total All extra logic 38.1% 26%

have optimistically ignored the additional delay over-
head due to the multiplexers, as we did not simulate
this scheme using HSpice.

We evaluate the performance overhead of the fault
tolerance scheme in two phases. First, we evaluate
the absolute delay overhead of the extra logic that
falls on the critical path, which we find to be 6% for
our fault tolerant multiplier and 53% for the REMOD
scheme. Since an X% increase in the delay of the
multiplier does not necessarily result in a X% over-
all microprocessor performance degradation, we sim-
ulate the execution flow of a modern microprocessor
pipeline. There are several reasons for the diminished
effect of the absolute delay overhead. First, multipliers
are not typically used in every clock cycle even with
workloads that are computation intensive, reducing
the overall impact. Second, with the out-of-order ex-
ecution in modern microprocessors, the increased la-
tency of the multiplier can be overlapped with other
data-independent instructions.

To evaluate the impact of the fault tolerance
schemes on the microprocessor performance, we use
a modified version of a detailed microprocessor simu-
lator, SimpleScalar [2]. We model a superscalar out-of-
order microprocessor that roughly resembles the AMD
Opteron/Athlon [1]. Table 5 shows the details of the
modeled microprocessor. The pipeline width of this
processor is 3 macro instructions, but these are then
cracked into multiple micro-ops, which is why there
are so many functional units. We evaluate the per-
formance overhead of the non-pipelined design and
compare this overhead with that of the REMOD-based
scheme. We also evaluate the performance overhead
of the pipelined design. Since the application of the
REMOD technique is non-trivial for pipelined designs,
we do not consider this scheme in simulations for the
pipelined multiplier. For benchmarks, we use the full
SPECCPU2000 suite running with the reference input
set. We sample the benchmarks with the SimPoint
methodology [15] to reduce the simulation time.

For the non-pipelined case, to model our fault tol-
erant multiplier, we add a 1-cycle overhead to the 8-
cycle multiplier latency to account for the 6% delay
penalty found by HSpice simulations. We also in-
crease the operational latency of the REMOD-based
scheme by 4 clock cycles to account for its 53% latency
overhead. Furthermore, for our scheme, we assume
that the multiplication result is immediately available
when the operation completes, but the instruction can-

Table 4: Summary of Overheads (0.18µm process)

Area Delay Avg Power

Circuit NP P NP P

Our multiplier 38% 26% 6% 36% 28%
REMOD 36% N/A 53% 36% N/A
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Table 5: Parameters of the Microprocessor System

Feature Details

pipeline stages 12
width: fetch/issue/commit 3/3/3
branch predictor 2-level GShare, 4K

entries
instruction fetch queue 72 entries
reservation stations 54 entries
reorder buffer 72 entries
load/store queue 44 entries
integer ALU 6 units, 1-cycle
integer multiply/divide 1 unit, 8-cycle mult,

74-cycle div
floating point ALU 3 units, 5-cycle
floating point 1 unit, 24-cycle mult,
multiply/divide 26-cycle div
floating point sqrt 35-cycle
L1 I-Cache 64KB, 2-way, 64-byte

blocks, 3-cycles
L1 D-Cache 64KB, 2-way, 64-byte

blocks, 3-cycles
L2 (unified) 1MB, 16-way, 128-

byte blocks, 20-cycles

not be committed until checked for correctness. We
add 2 clock cycles between complete and commit for
multiplication instructions for this purpose. For the
pipelined multiplier, we once again increase the la-
tency of the multiplier from 8 to 9 cycles to account
for the multiplexer delays. The pipelined multiplier
can produce a result every clock cycle. We also add
a 2-cycle latency between the complete and commit
phases for the check operation to finish.

In the non-pipelined multiplier case, the normal-
ized number of instructions per clock cycle (IPC) of
the benchmarks are given in Figure 5 for the baseline
multiplier, our protected multiplier, and the REMOD-
based protected multiplier. For each benchmark, IPC
is normalized using the baseline value. For our
fault tolerant multiplier, the highest IPC degradation
is around 10% for some floating point benchmarks,
while the IPC degradation is much lower for the in-
teger benchmarks. For the REMOD-based scheme,
up to 26% IPC degradation is observed (for art). The
degradation in the harmonic mean of the IPCs is found
to be 5% for our scheme and 21% for the REMOD-
based scheme. Thus, the actual performance over-
head of our fault tolerant design on the execution of
a microprocessor using an equally weighted mix of
these benchmark applications is low. However, the ef-
fect of the REMOD-based scheme is considerable.

The simulation results for a pipelined multiplier are
given in Figure 6. Our scheme’s highest IPC degrada-
tion is 8% for applu, and the degradation in the har-

monic mean of the benchmark IPCs is 2.5%.
The delay overheads due to diagnosis and pipeline

flushes are only transient effects during reconfigura-
tion. Thus, we do not include these effects in our cal-
culations.
Power Consumption In order to keep the power con-
sumption overhead low, we connect the inputs of the
spare RU to ground in the normal functional mode,
making its power consumption negligible (due to leak-
age only). After reconfiguration, the inputs of the
faulty RU are connected to ground by switching the
multiplexer select lines. This enables a uniform power
consumption before and after reconfiguration. As
shown in Table 4, the power consumption overhead
of our multiplier is 36% for non-pipelined and 28.5%
for pipelined designs, including the modulo checker.

5 Conclusion

We have developed a low-cost, fault-tolerant recur-
sive multiplier for use in commodity microprocessors.
Our design can detect and correct errors, diagnose the
fault location, and reconfigure itself to map out faulty
sub-units. We conclude that cost-effective fault toler-
ant multipliers can be designed with sufficient perfor-
mance to be feasible for high-performance commod-
ity microprocessors. The key insight was to consider
the multiplier as it operates within the microprocessor,
rather than in isolation. This insight enabled us to
leverage the microprocessor’s existing recovery mech-
anism, and it focused our circuit design efforts on
those portions of the multiplier that impacted the crit-
ical path of microprocessor operation.
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