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Abstract 
Most shared memory systems maximize perfor-

mance by unpredictably resolving memory races. Un-

predictable memory races can lead to nondeterminism 

in parallel programs, which can suffer from hard-to-

reproduce hiesenbugs.  

We introduce Calvin, a shared memory model ca-

pable of executing in a conventional nondeterministic 

mode when performance is paramount and a determi-

nistic mode when execution repeatability is important. 

Unlike prior hardware proposals for deterministic ex-

ecution, Calvin exploits the flexibility of a memory con-

sistency model weaker than sequential consistency. 

Specifically, Calvin logically orders memory opera-

tions into strata that are compatible with the Total 

Store Order (TSO). Calvin is also designed with the 

needs of future power-aware processors in mind, and 

does not require any speculation support. 

We develop a Calvin-MIST implementation that 

uses an unordered coalescing write cache, multiple-

write coherence protocol, and delayed (timebomb) 

invalidations while maintaining TSO compatibility. 

Results show that Calvin-MIST can execute workloads 

in conventional mode at speeds comparable to a con-

ventional system (providing compatibility) or execute 

deterministically for a modest average slowdown of 

less than 20% (when determinism is valued).  

1. Introduction 

Nondeterminism in multithreaded applications 

arises from memory races that current implementations  

does not control, especially for shared memory multi-

processor systems such as multicore processors. This 

nondeterminism can lead to problems, such as hard-to-

find bugs that cost billions of dollars per year [38].  

Recently, researchers have proposed various 

hardware [11,43] and software [5,11,32] solutions to 

address multithreaded nondeterminism. They have 

shown that addressing the problem has the potential to 

(1) increase software reliability by enhancing software 

test coverage before release [43], (2) increase system 

reliability through replication based fault tolerance [9], 

(3) aid in multithreaded software engineering [42], and 

(4) enhance security by providing a tool to analyze an 

attack [13]. Many of these prior proposals either rely 

on the ability to replay a previously recorded execution 

[14,20,27,28,31,41,42], incur a performance overhead 

that is likely too high for always-on usage [5], require 

complex speculative hardware [11], or only guarantee 

determinism in well behaved programs [32]. 

In response to these shortcomings, we propose 

Calvin, a multiprocessor system model that can guaran-

tee determinism for multithreaded applications at an 

acceptably low overhead (e.g., 20%). The Calvin mod-

el is fully compatible with the Total Store Order (TSO) 

memory model [18,40], making it backward compati-

ble with the majority of commercially relevant archi-

tectures, including x86, SPARC, PowerPC, and ARM. 

TSO defines a total memory order that is consistent 

with each processor’s program order, except that stores 

may be delayed provided a processor’s loads see its 

own stores immediately (e.g., an implementation can 

use FIFO store buffers, even without speculation).  

While determinism shows great potential for de-

veloping new multithreaded software, some applica-

tions may not benefit from system-enforced determin-

ism, so those applications should not have to pay a 

determinism performance penalty. For example, some 

language and run-time systems provide deterministic 

execution semantics on nondeterministic hardware 

[2,8,16] and existing multithreaded software may al-

ready be robust to nondeterministic effects. These sys-

tems receive little or no benefit in exchange for any 

overheads of system-enforced determinism. 

To allow both deterministic and nondeterministic 

execution, a Calvin system can execute in one of three 

modes with different determinism guarantees. 

• In Conventional (C) mode, a Calvin system does 

not make specific guarantees about execution or-

der and behaves like a conventional TSO system. 

• In Bounded Deterministic (BD) mode, a Calvin 

system guarantees that an execution will be re-

peatable when run on the same Calvin hardware 

implementation and given the same input. 

• In Unbounded Determinism (UD) mode, a Calvin 

system guarantees that an execution will be re-

peatable when run on any Calvin hardware im-

plementation and given the same input. 
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Figure 1 –Calvin execution deterministically enforces a 

single valid TSO interleaving (top right) from among the sever-
al possible alternatives. Within a stratum S, all processors 

logically order all loads first and then all stores in a fixed order 
(e.g., processor P0’s stores before P1’s). To conform to TSO, 

each load by Pi gets its value from a store by Pi before it in 
program order (if any) or from the value at the end of stratum 
S-1. For example, instruction i2 gets its value from i1, while i3 
gets a value from stratum S-1. Strata are sequentially ordered. 

As we will show in Section 2.2, the three modes of 

a Calvin system offer a user-adjustable knob that can 

trade off reduced performance for stronger determin-

ism guarantees. Importantly, we also show that a user 

not wanting determinism does not have to incur a large 

performance penalty in a Calvin system (i.e., Conven-

tional mode has comparable performance to a non-

Calvin baseline system). Depending on application 

requirements, users can choose BD mode when deter-

minism is desired across different systems or UD mode 

when determinism on the same system will suffice. 

When the weaker guarantee of BD is sufficient, per-

formance may improve.  

Hardware enforced determinism is valuable only if 

it can be achieved with good performance at acceptable 

power across many systems, including those that use 

simple cores with little or no speculation [21,39]. To 

this end, we explore the extreme position of imple-

menting Calvin with a simple, in-order non-speculative 

core (and without the speculation support required by 

previous deterministic systems [11]). Future work may 

show that adding speculation makes performance-

power sense for some systems. 

Calvin works by having all processors map memo-

ry operations into a series of global strata, (see Figure 

1). Strata end when a stratum termination function 

holds for all processors. The stratum termination func-

tion differs for each of the three Calvin modes. Con-

ventional mode minimizes Calvin’s performance over-

head by ending strata nearly simultaneously (e.g., by 

counting cycles). BD mode considers deterministic 

micro-architectural events (e.g., store buffer full) as 

well as architectural events (e.g., store count). UD 

mode ends strata based on architectural events only. 

To this end we develop the Calvin-MIST imple-

mentation with some key micro-architectural features: 

• It replaces a standard FIFO store buffer with a 

simpler-to-make-larger unordered coalescing 

write cache, while still maintaining TSO. 

• It implements a multiple-writer coherence proto-

col, again without compromising TSO. 

• The protocol adds a timebomb (T) state to the con-

ventional MSI states, hence the name “MIST,” to 

plant delayed invalidations that cause blocks to 

self-destruct when the current stratum ends. 

We evaluate Calvin-MIST with the Parsec [6] and 

Mantevo [1] workloads running on x86 Linux 2.6.26. 

We simulate a 8-processor multicore with Bochs [25] 

and GEMS [24] and compare against a conventional 

nondeterministic system implementing an MOESI pro-

tocol. Results ask and answer two questions: 

Question 1: Can Calvin-MIST avoid harm? Yes, 

Calvin-MIST executes nondeterministic programs at 

speeds comparable to a conventional system, thereby 

maintaining functional/performance compatibility. 

Question 2: Can Calvin-MIST do some good? Yes, 

Calvin-MIST executes deterministic programs at a per-

formance overhead less than 20%, thereby providing a 

benefit when determinism is valued. 

Moreover, if record-replay is desired, Calvin’s de-

terministic execution can eliminate the need for memo-

ry race recording at reasonable overhead, because only 

one memory race outcome is possible. 

In our view, contributions of this paper include: 

• Demonstrate a Non-Speculative Hardware Im-

plementation that shows determinism can be pro-

vided at an acceptable performance even without 

the power and complexity of speculation. 

• Leverage Total Store Order (TSO) Hardware 

which is compatible with ARM, SPARC, Po-

werPC, and x86 systems and provides more free-

dom for optimization than sequential consistency, 

assumed in previous hardware determinism sys-

tems [11,20,27,30,31,33,34,42]. 

Below, we present the Calvin execution model 

(Section 2), describe the Calvin-MIST implementation 

(Section 3), give evaluation methods (Section 4), pro-

vide experimental results (Section 5), contemplate fu-

ture work (Section 6),discuss related work (Section 7), 

conclude (Section 8), and formalize  (Appendix A). 

2. Calvin Model 

Calvin partitions an execution into strata whose 

termination condition determines the execution mode. 

To follow TSO terminology, we use loads/stores to 

refer to the reads/writes of x86 instructions. 

Stratum S 

  Stratum S+1 

Processor 0 

  Stratum S 

Processor 1 

i4:    ST(A) � 2

i5:  R0 � LD(A)

i6:     ST(B) � 3

i1:    ST(B) � 1    
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i3:  R2 � LD(A)
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2.1. Strata 

The Calvin execution model partitions the dynam-

ic loads and stores of a multiprocessor execution into 

global strata. Operationally, each processor begins a 

stratum, executes dynamic loads and stores until a stra-

tum termination condition holds, synchronizes with 

other processors to ensure deterministic store order and 

repeats for the next stratum. An interrupt gets deferred 

until the next stratum boundary, much like how an in-

terrupt during a complex instruction awaits an instruc-

tion boundary. The system logically keeps strata in 

sequence, so that all processors appear to complete 

loads and stores for stratum S before they appear to 

execute loads and stores for stratum S+1. 

Within each stratum, execution proceeds as: 

1. Each processor appears to execute its instructions, 

including loads and stores, in program order, but 

defers the global visibility of stores so that they 

appear after all loads (e.g., with a store buffer). 

2. Loads return the address’ value at the beginning of 

the stratum, unless the same processor has per-

formed a store to the same address within the stra-

tum (i.e., store buffer bypassing).  

3. Finally, Calvin specifies that the stores of different 

processors be ordered in a predictable order. After 

all loads are logically complete, processor P0’s 

stores get ordered, then processor P1’s stores, etc. 

Priorities should be rotated during subsequent stra-

ta to ensure fairness and avoid deadlock. 

Strata rules have several consequences. First, stra-

tum execution is legal under TSO, ensuring backward 

compatibility. See a proof sketch in Appendix A. 

Second, stratum rules permit exactly one TSO execu-

tion, ensuring determinism within each stratum. Third, 

loads and stores from different processors do not com-

municate within a stratum. In particular, each load gets 

a value either from a previous store by its own proces-

sor or the value at the end of the last stratum. This con-

sequence will allow our implementation to use unor-

dered store buffers and a multiple-writer coherence 

protocol. 

The stratum memory ordering invariants hold for 

all three Calvin execution modes. The next subsection 

discusses how adjusting stratum termination deter-

mines whether the complete execution exhibits 

bounded determinism, unbounded determinism, or 

nondeterminism (i.e., conventional).  

2.2. Stratum Termination Condition 

Determines Execution Mode 

A Calvin processor reaches the end of a stratum 

when a stratum termination condition holds for that 

particular processor, while the stratum globally com-

pletes when all processors have arrived at the stratum 

boundary. Thus, stratum termination is logically a bar-

rier but does not have to be implemented as one. 

The stratum termination condition determines 

whether the system operates in conventional, bounded 

deterministic or unbounded deterministic mode: 

Conventional (C). A Calvin system executes in 

conventional mode if the stratum termination function 

depends on nondeterministic criteria. For example, a 

stratum termination function based on cycle count pro-

duces stratum boundaries at nondeterministic execution 

points, but can maximize performance by minimizing 

the load imbalance of when processors end strata. 

Bounded Deterministic (BD). A stratum termina-

tion condition that uses both architected and non-

architected but predictable state can provide a bounded 

deterministic execution. For example, a stratum could 

end either after a certain number of instructions have 

completed or when a store buffer fills up. This mode 

may reduce the cost of building a Calvin system com-

pared to a more robust form of determinism (discussed 

next) by, for example, permitting a smaller store buffer. 

Unbounded Deterministic (UD). An unbounded 

deterministic execution results if the stratum termina-

tion condition depends only on architected state, e.g., 

instruction count. A UD execution is deterministic 

across all implementations of the Calvin architecture. 

2.3. Atomic Operations 

Atomic read-modify-write operations require spe-

cial treatment in the Calvin model, just as they do in 

the underlying TSO model. Atomic operations in a 

TSO system obey the following rules: (a) execute all 

previous load and stores, (b) perform the load and store 

of the atomic operation, and (c) then execute any sub-

sequent loads and stores. Operations of other proces-

sors may interleave with (a) and (c), but not (b).  

Calvin handles atomic operations by (1) ensuring 

that at most one atomic executes per stratum and (2) 

logically placing atomics at the end of a stratum. Cal-

vin inserts an implicit condition into all stratum termi-

nation conditions to end a stratum immediately after an 

atomic, achieving condition (1) above. Second, Calvin 

executes a processor’s atomic as if it were the proces-

sor’s last store of the stratum (including the read part of 

a RMW). This ensures that all previous loads and 

stores are ordered before the atomic (TSO rule part a). 

While Calvin’s atomic rules correctly implement 

TSO rules, they have an important consequence. Pro-

cessors can communicate within a stratum via atomics, 

thereby violating Calvin rule 1. For example, if proces-

sor P0 stored 0, while processors P1 and P2 performed 

atomic increments on the same address, the address’s 

final value would be 2. Thus, both atomic increments 

observe a value updated in their own stratum. 
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2.4. External Inputs 

All potentially deterministic systems can only be 

deterministic in response to deterministic input. This is 

straightforward for programs that operate on fixed in-

put data that is available before execution begins. 

Calvin also remains deterministic in the presence 

of internally generated and/or asynchronous inputs. 

Internally generated inputs are predictably scheduled a 

predefined number of strata after a causal action (e.g., 

after initiating a DMA read). Asynchronous inputs are 

made repeatable by recording the contents and logical 

time of the input (e.g., an interrupt vector number and 

the dynamic instruction count when the interrupt was 

raised), as done by record-replay systems [42]. 

3. Calvin-MIST: A First Implementation 

Calvin-MIST, our initial implementation of the 

Calvin model, targets the multicore system illustrated 

in Figure 2. Calvin-MIST replaces the conventional 

ordered FIFO store buffer found in conventional TSO 

systems with a set-associative, non-FIFO, unordered 

coalescing write cache (Section 3.1). Our design also 

implements the MIST multiple-writer coherence proto-

col (Section 3.3), which supports multiple concurrent 

writers and a timebomb (T) state that causes blocks to 

self destruct at the end of strata.  

Calvin-MIST executes each stratum in two phases, 

illustrated in Figure 3. In phase one, each processor 

locally executes its instructions in program order. 

Stores write their address and data into the write cache. 

Loads check the write cache, bypassing their data if 

present, and access the cache hierarchy otherwise. Pro-

cessors synchronize at the end of phase one using a 

dedicated fast hardware barrier. 

  

In phase two, the processors flush their write cach-

es in parallel to the cache hierarchy. Updates to exclu-

sive blocks occur locally, incurring no additional 

communication beyond a conventional writeback cohe-

rence protocol. For blocks with multiple writers, the 

MIST coherence protocol ensures that updates occur in 

a deterministic order. Atomic operations also execute 

entirely in phase two, ensuring that atomic reads re-

ceive the correct value (Section 2.3). Phase two ends 

with a second fast barrier. 

3.1. Write Cache 

Calvin-MIST replaces a traditional store buffer 

with a structure we call the write cache. Unlike a store 

buffer, the write cache does not have to maintain pro-

gram order of stores and can therefore be implemented 

as a set-associative cache. Like a store buffer, a proces-

sor puts all stores into the write cache and subsequent 

loads bypass from it. Unlike a store buffer, stores in the 

write cache can be flushed to the L1 in any order since 

the MIST coherence protocol ensures that memory 

operations appear in the correct Calvin order regardless 

of when they are written back. Furthermore, it allows 

the write cache to coalesce stores. 

The write cache keeps all stores private until the 

stratum’s second phase by buffering update values. 

During phase two, stores move from the write cache to 

update the local cache and (much less often) coordinate 

with the directory in the case of a conflict. After flush-

ing the write cache, the processor synchronizes at the 

second barrier and is ready to begin the next stratum. 

Because the write cache is responsible for ensuring 

that writes remain private in a stratum, Calvin-MIST 

must handle write cache overflow carefully. In 

bounded deterministic or conventional modes, it is suf-

ficient to simply end the stratum when an overflow is 

about to occur since Calvin does not make any guaran-

tees about the actual stratum size in those modes.  

Processor 0
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LOADS
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Flush Stores
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Figure 3 - Calvin-MIST operation  

Figure 2 - Base system with Calvin additions highlighted: the 

write cache, a single timebomb bit per L1D cache block, and a 
dedicated barrier line 
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In unbounded deterministic mode only, the stratum 

termination cannot depend on the write cache capacity 

(which may differ between implementations) and so we 

use a simple logging technique to logically extend the 

write cache size. When a store does not fit in the write 

cache, it is written to a software log in the virtual ad-

dress space of an application, similarly to how values 

are remembered in some transactional memory systems 

[3,29,35].  Additionally, a flag in the corresponding 

write cache set indicates that an overflow has occurred. 

On any subsequent miss to that set, a log walk deter-

mines if the address is present and, if found, the log 

entry is treated like a normal entry in the write cache. 

Access to the log is performed out of band from the 

standard MIST protocol (Section 3.3) to ensure that 

reads/writes complete immediately.  

3.2. Stratum Termination Function 

In Calvin-MIST, the execution mode determines 

when a processor stops executing instructions and 

coordinates to terminate a stratum. Let a 

STRATUM_LIMIT register hold a maximum count.  

• Conventional (C) mode terminates a stratum (a) 

when the number of cycles elapsed in the stratum 

equals STRATUM_LIMIT, (b) a serializing in-

struction executes (e.g., atomics, I/O), or (c) a pro-

cessor resource saturates (e.g., the write cache). 

• Bounded Deterministic (BD) mode terminates a 

stratum (a’) when the number of instructions 

elapsed in the stratum equals STRATUM_LIMIT, 

(b) a serializing instruction executes, or (c) a pro-

cessor resource saturates (e.g., the write cache). 

• Unbounded Determinism(UD) mode  terminates a 

stratum (a’) when the number of instructions 

elapsed in the stratum equals STRATUM_LIMIT 

or (b) a serializing instruction executes. 

C mode minimizes processor idle time, but is not 

deterministic. BD is deterministic on the same hard-

ware only, as it includes micro-architectural events. 

UD includes architectural events only. 

3.2.1. Stratum Limit Prediction. 
As the results in Section 5 will show, different 

workloads perform best with very different values of 

STRATUM_LIMIT. Workload (phases) with fine-grain 

synchronization prefer small values to decrease inter-

thread communication latency while those with more 

coarse grain interaction prefer large values to better 

amortize stratum termination overheads.   

To avoid setting STRATUM_LIMIT a priori, Cal-

vin-MIST uses a standard two-bit predictor to vary 

STRATUM_LIMIT in powers of two between two ex-

tremes (e.g, 64-4096 instructions). The predictor 

decrements when a stratum ends with one or more pro-

cessors executing an atomic. Strata that end with no 

atomics increment the predictor. When the predictor 

saturates high (low), STRATUM_LIMIT is doubled 

(halved) within the extremes.  C and BD modes also 

decrement the predictor for resource exhaustion. 

Determining whether to increment/decrement the 

predictor can be done by piggy-backing a single bit 

logical-OR reduction on the stratum ending barrier, 

similar to the wired-OR signal that snooping systems 

use to determine ownership. The predictor is replicated 

at each processor and kept in sync by updating only at 

the end of a stratum. 

3.3. MIST Coherence Protocol 

Calvin-MIST implements a novel directory cohe-

rence protocol, called MIST, to enforce the stratum 

ordering constraints of the Calvin model. The cohe-

rence protocol must ensure two things:(1) that all cache 

misses return data from the end of the previous stratum 

and (2) that stores by different processors to the same 

cache block within the same stratum are ordered de-

terministically. Furthermore, for performance the pro-

tocol should ensure that (3) cache blocks with a single 

writer should perform comparably to a conventional 

writeback coherence protocol. To achieve these goals, 

MIST has several features that distinguish it from more 

traditional protocols: 

Multiple Concurrent Writers. The MIST proto-

col supports multiple concurrent writers, since multiple 

threads can store to the same address during a stratum. 

To ensure deterministic execution, the MIST directory 

tracks concurrent writers and ensures that their updates 

are performed in a deterministic order.  

Timebomb State. The timebomb state allows 

readers to coexist with writers in the same stratum. 

Rather than invalidate blocks when another processor 

signals intent to write during phase one, the timebomb 

state allows a processor to retain read permission (to 

the value from the end of the previous stratum). At the 

end of the current stratum, the block self-destructs and 

becomes invalid. The timebomb state eliminates the 

need to send explicit invalidate messages.  

To support both multiple concurrent writers and 

the timebomb mechanism, the Calvin-MIST protocol 

interacts with an on-chip 16-cycle hardware barrier 

[4,10] that communicates stratum boundaries out of 

band from normal coherence request.  To ensure cor-

rectness, all outstanding coherence requests must com-

plete before a processor asserts the barrier. Also, as a 

consequence of allowing multiple writers, MIST im-

plements two-phase stores. Stores are placed in the 

write cache during phase one and only update the cache 

hierarchy in phase two. Loads execute entirely during 

phase one, ensuring that they never see the effect of 

another processor’s store during the same stratum.  
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3.3.1. Directory States 
The directory in Calvin-MIST is split into banks at 

the last level of cache (L2). It has a bit vector to keep 

track of either concurrent readers or concurrent writers.  

Table 1 lists the MIST directory’s five stable 

states. The MM, M, S, and I states are similar to those 

in a conventional MSI protocol. A block in the MS 

state indicates multiple concurrent writers and plays a 

key role in enforcing the Calvin stratum ordering rules. 

At the end of a stratum’s phase one, the bit vector for a 

block in the MS state indicates all processors that in-

tend to write the block. The directory uses this infor-

mation during phase two to determine the order in 

which those stores complete (Section 2.1’s rule 3).  

Directory block replacements in MIST are compli-

cated because in doing so the directory forgets which 

processors are concurrent writers (if any). We add a 

single replacement bit to each directory bank that is set 

when any block is replaced and is cleared at the end of 

phase two. When an incoming request misses in the 

directory while the replacement bit is set, the directory 

conservatively assumes that it has already seen and 

replaced that block in the current stratum and initiates a 

WhoIsWriter query. All processors check their write 

cache for the block and reply either affirmative or neg-

ative. Because the query and the DRAM fetch for the 

missed block occur in parallel, there is almost no laten-

cy penalty. Our observations of Calvin-MIST in action 

indicate that the querying for writers occurs rarely and 

so is not a concern for performance.  

3.3.2. L1 Cache States 
MIST is designed for write-back L1 caches in or-

der to minimize communication with the directory. L1 

caches in MIST operate on five stable states and one 

timebomb state, as shown in Table 2. The M, S, and I 

states are like those in a conventional protocol while 

the remaining are specific to MIST. Below we will 

describe each of the remaining stable and timebomb 

states and how they help MIST enforce the determinis-

tic memory order demanded by the Calvin model. 

The Mw state differs from the M state in that it 

represents a block written in the current stratum, as 

opposed to one written in a previous stratum. Like M,  

 

the Mw state indicates that there are no other writers, 

allowing the write cache to update the L1 cache (in 

phase two) without communicating with the directory. 

The distinction between M and Mw also allows the 

protocol to correctly detect whether or not a conflicting 

coherence request indicates multiple writers in the 

same stratum. Blocks in Mw transition to M in phase 2. 

The timebomb state, Ts, corresponds to temporary 

read permission for a block in the presence of one or 

more other writers. Data in the Ts state may be read 

until the end of the stratum, at which point the time-

bomb self-destructs and the block returns to the I state. 

The timebomb allows MIST to efficiently handle situa-

tions where a processor is reading a block that will be 

overwritten by another processor’s store at the end of 

the stratum. Without a time-delayed invalidation me-

chanism, readers in this situation would have to be ex-

plicitly invalidated by the directory during phase two. 

Blocks in Ts are anonymous because the directory bit 

vector is reused to track both reader and writers; while 

at least one processor is writing the block the directory 

cannot keep track of the readers. 

Finally, blocks in the MMw state represent data 

being written by the local processor and at least one 

other. Stores for blocks in the MMw state will be writ-

ten back to the directory in phase two so that the store 

can be correctly ordered. After a store request com-

pletes in phase two, a block in MMw transitions to I.  

3.3.3. MIST Complexity 
Here we compare MIST to a conventional MESI 

protocol designed for the same base system and an 

MOESI protocol designed for a multi-chip CMP in an 

attempt to gauge the complexity of our new protocol. 

Table 3 shows the number of stable, transient, and total 

states for each protocol (from Wisconsin GEMS [24]). 

Results show that MIST’s state count is compara-

ble to MESI and MOESI. Thus, while MIST may seem 

more complex, in part, because it is unfamiliar, it has 

comparable complexity.  

Table 2 – L1 Cache MIST states 

State Meaning Global  

Invariant 

I Not Present/Invalid 0 or more readers,  

0 or more writers 

S Read Permission, no other 

writers in the system 

1 or more readers, 

 0 writers 

M Write permission, didn’t 

write in current stratum 

0 readers,  

1 writer 

Ts Read permission until the 

end of the stratum 

1 or more readers,  

1 or more writers 

Mw Write permission, wrote in 

current stratum 

0 readers,  

1 writer 

MMw Write permission until the 

end of the stratum 

0 or more readers, 

2 or more writers  

 

Table 1 – L2 Directory States in MIST. 
State Meaning Global Invariant Valid at 

I Not Present/Invalid 
0 readers,  

0 writers 
Memory 

S One or more readers 
1 or more readers,  

0 writers 
L2 Cache 

M Only one writer  
0 or more readers,  

1 writer 
Processor 

MM No readers/writers 
0 readers,  

0 writers 
L2 Cache 

MS Multiple writers  
0 or more readers,  

1 or more writers 
L2 Cache 
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Table 3 – The number of states in MIST compared to 

conventional MESI and MOESI protocols 

 MIST MESI MOESI 

Stable @ L1 6 4 7 

Transient @ L1 12 6 8 

Stable @ L2 5 3 13 

Transient @ L2 17 14 46 

Total 40 27 54 

3.4. Example to “Put It All Together” 

Figure 4 illustrates Calvin-MIST in action (time 

goes down) for Processor P0 (left), directory (center), 

and Processor P1 (right) manipulating one location 

whose address is omitted.  

Stratum S illustrates P1 acquiring write permission 

in phase one, and then completing the store locally in 

phase two. A GetM request by P1 (1) acquires write 

permission and causes P0 to transition into the Ts state. 

P1 transitions to Mw because it is the only writer. At 

the end of phase 1, P1 issues a store (2) which transi-

tions the block into the M state. At the end of phase 2, 

the block in Ts timebomb state at P0 explodes. 

Stratum S+1 shows the common case where P1 al-

ready has write permission to the block in phase one, 

and completes the store without communicating with 

others. Processor P1 can make its intent to write (3) 

known and write the data (4) without communicating 

with others. 

Stratum S+2 shows how MIST resolves conflicting 

stores. GetM requests (5) and (6) acquire write permis-

sion for processors P0 and P1, and both end up in state 

MMw. When phase 1 completes, both processors write 

their data back to the directory (7), (8). At the directory 

P1 is ordered after P0, so P0’s writeback applied (9), 

while the writeback from P1 is nacked (10). P1 retries 

the writeback (11), which is then accepted by the direc-

tory (12). 

3.5. Calvin Hardware Overhead 

Compared to a conventional multiprocessor sys-

tem using in-order pipelines, Calvin-MIST adds only a 

small number of additional hardware structures. First, 

the store buffer in a conventional system is replaced 

with the write cache in Calvin-MIST. Because of Cal-

vin’s buffering requirements, the write cache will like-

ly be sized slightly larger than a store buffer in a simi-

lar conventional system, but the write cache itself is a 

simpler structure because it doesn’t have to order 

stores. If unbounded determinism is desired, Calvin-

MIST additionally adds a log head and tail pointer to 

keep track of write cache overflows.  

Calvin-MIST also adds a single bit to every L1 

cache line to represent the timebomb state. A Calvin-

MIST cache must also have the ability to flash clear 

this bit on the end of a stratum [17]. At each di rectory 

bank, a single replacement bit is also 

introduced so that the directory can know that it may 

be missing information about outstanding writers (Sec-

tion 3.3.1). 

Calvin-MIST adds a dedicated hardware barrier so 

that stratum boundaries can be communicated quickly 

[4,10]. For the predictor, a two-bit counter is added to 

each core and a global wired-OR line is used to com-

municate the prediction at the end of each stratum.  

3.6. Extensions 

 While we have described Calvin-MIST in terms 

of a specific in-order multicore system, the mechan-

isms could be extended to work with alternative base 

architectures. In particular, Calvin-MIST can work 

with out-of-order cores by dealing only with committed 

store values. In this situation, values in the write cache 

would hold non-speculative state only.  

4. Evaluation Methods 

We have implemented Calvin-MIST in an execu-

tion driven full system simulator based on Bochs[25] 

and a modified version of Wisconsin GEMS [24]. We 

model pipelined in-order x86 processors running 64-bit 

Linux version 2.6.26. For comparison, we use a base 

system shown in Figure 2 of Section 3 modeled after 

the parameters in Table 4.  
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Figure 4 – Calvin-MIST in action for a block 
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Table 4 - System parameters 

 Base Calvin-MIST 

Cores 8, 2.0 GHz in-order pipelined 

Write Cache N/A 64 entry, 8 way 

L1 Cache Private, Split L1 I&D, 32K 8-way, 1 cycle 

Coherence 

Protocol 
Conventional MOESI 

Multiple Writer 

MIST 

Barrier N/A 16-cycle latency 

L2 Cache Shared, 8MB, 16-way, 8 banks, 12 cycles 

Directory Distributed at the L2 banks 

 

We ensure that interrupts appear deterministically 

across runs of the same program in our simulated sys-

tem by (a) restricting interrupt injection to stratum 

boundaries and (b) by ensuring that interrupts occur 

after a well-defined amount of logical time has passed. 

For example, when an inter-processor interrupt (IPI) is 

sent from one processor to another, we ensure that the 

interrupt will be received in the stratum after a set 

number of instructions have completed. Similarly, we 

ensure that input instructions always receive the same 

value by starting the system from a checkpointed state 

and by ensuring that our device models are determinis-

tic. 

To help verify that Calvin-MIST does indeed en-

force a deterministic execution, we used the Racey 

microbenchmark that is exceedingly sensitive to the 

order of unsynchronized data accesses [19]. The Racey 

program produces a signature that has a high probabili-

ty of changing under different race outcomes. We have 

observed hundreds of runs of Racey on Calvin-MIST 

produce the same signature, even when introducing 

frequent random network delays, lending strong evi-

dence (though not proof) that our implementation is 

correct.  

We evaluate Calvin-MIST using the Parsec 2.0 [6] 

and HPC Mantevo [1] workload suites. Some work-

loads from Parsec and Mantevo are not included in the 

results due to a combination of compilation issues and 

simulator constraints. For all Parsec workloads, we use 

the simsmall input set.  

5. Evaluation Results 

These results ask and answer two questions and 

then perform some sensitivity analysis. 

 

Question 1: Can Calvin-MIST avoid harm? Yes, 

Calvin-MIST executes nondeterministic programs at 

speeds slightly worse than a conventional system, the-

reby maintaining performance compatibility. 

Question 2: Can Calvin-MIST do some good? Yes, 

Calvin-MIST executes deterministic programs at a per-

formance overhead less than 20%, thereby providing a 

benefit when deterministic is valued. 

5.1. Bottom Line: Calvin Performance 

In Figure 5 we compare the performance of Cal-

vin-MIST to our baseline system and find that on aver-

age Calvin-MIST performs with a modest degradation 

(8%) to the baseline in conventional mode and sees 

around a 20% slowdown for both deterministic modes. 

Calvin-MIST facilitates adoption by providing 

functional and performance compatibility with nonde-

terministic workloads. There are many reasons why 

Calvin-MIST could perform comparably to the base-

line system even with the overhead of a two-phase ex-

ecution. For one, Calvin-MIST reduces the impact of 

false sharing by allowing multiple simultaneous writers 

and by delaying reader invalidation. Delayed invalida-

tion has previously been shown to reduce the negative 

impact of false sharing [12] and improve the perfor-

mance of critical sections [36]. Second, other results 

(not shown) indicate that several of the Parsec work-

loads benefit from the coalescing effect of the write 

cache. Third, the simple strata size predictor used by 

Calvin-MIST dynamically detects application synchro-

nization and communication patterns, limiting load 

imbalance within a stratum. 

 

 

 

 
Figure 5 – Calvin-MIST performance using stratum limit prediction. We show the execution time normalized to our baseline for C, 

BD, and UD modes.  For each data point, we show the average stratum limit over the run, in number of cycles for C and number of 
instructions for BD and UD, that the predictor chose. Also, the stack segments of each bar show how much time is spent in phase one 

(shaded), phase two (black), and accessing the overflow log (light grey, nearly negligible). 
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Some workloads perform slightly worse in con-

ventional mode Calvin-MIST. There are at least three 

causes of this slowdown. First, the conservative 16-

cycle barrier we modeled in Calvin-MIST has a notice-

able impact when small stratum limits are used, such as 

in Fluidanimate. Results, not shown, with a 4-cycle 

barrier largely mitigates the slowdown. Second, even 

though the conventional stratum termination function 

tries to mitigate the impact of load imbalance, a pro-

cessor cannot enter the barrier until all outstanding 

instructions have completed. Thus a cache miss on one 

processor just before phase one is scheduled to end can 

cause all processors to stall until it completes. Finally, 

inter-thread communication through shared memory is 

delayed when running in Calvin because threads cannot 

communicate within a stratum. Workloads that exhibit 

frequent fine-grained locking, such as Fluidanimate, 

are affected by this communication delay.  

The deterministic modes are somewhat slower 

than conventional mode because in the deterministic 

modes the speed of each stratum as a whole is limited 

by the slowest running processor. Thus, if one proces-

sor is frequently missing to main memory it will slow 

down the entire system. Calvin-MIST experiences an 

average (geometric mean) slowdown of around 20% 

over the baseline in both deterministic modes. 

5.2. Execution Breakdown 

Figure 5 also shows the breakdown of each execu-

tion into time spent in normal execution (phase one), 

flushing the write cache (phase two), and, in the case of 

unbounded deterministic mode, time spent overflowing 

the write cache to the software log.  

As expected, most time is spent in phase one. The 

effect of flushing the write cache is small because for 

data race free programs, the only store conflicts that 

occur are due to false sharing in cache blocks. Thus, 

most stores in phase two are L1 cache hits.  

To gauge the performance impact of unbounded 

determinism support, we calculated the effect of over- 

 

flowing the write cache by charging an L1 miss (17 

cycles) for each read/write to the log. We find that for 

most workloads, the impact of log access is negligible.  

5.3. Prediction Effectiveness 

We tested the accuracy of the Calvin-MIST stra-

tum limit predictor by comparing the execution time 

using the predictor to a run that uses a best-case static 

stratum limit. We tested static stratum limits between 

64-2048 instructions for deterministic mode and 100-

20,000 cycles for conventional mode, and then selected 

the size that resulted in the best performance.  

Figure 6 shows the speedup of the system using a 

predictor over one using static stratum limits. The pre-

dictor performs better in all but four workloads, most 

likely because the predictor is able to capture phase 

behavior over the course of a run. Workloads that per-

form better with static stratum limits may exhibit pat-

terns not captured by the predictor, such as communi-

cation through a flag without the use of atomics.  

5.4. Write Cache Sensitivity Analysis 

Next we varied the write cache size among 16, 32, 

and 64 64-bytes entries (1, 2, and 4 KB). Figure 7 

shows the results of this analysis, and indicates that the 

write cache does not need to be large for good perfor-

mance in our workloads. We also varied the associativ-

ity between 4 and 8 ways (not shown) and found that 

associativity has a negligible effect on performance. 

Our results show that systems with unbounded de-

terminism support are more sensitive to write cache 

size than systems configured for bounded determinism 

due to log accesses. This is illustrated by the execution 

breakdown in Figure 7, in which looking at each bar 

without the final stack for log accesses closely approx-

imates results for bounded determinism.   

5.5. Frequency of Writeback Messages 

Calvin-MIST generates extra writeback messages 

whenever two or more processors write the same cache 

block in the same stratum, since the directory must  

Figure 7 – Write cache sensitivity analysis for UD mode. 
Results are normalized to a conventional MESI protocol. 
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Table 5 - HPCCG 1024 instructions/stratum, bounded de-

terminism 
CPU 0 1 2 3 4 5 6 7 

Insn cnt 

(M) 
235 235 235 235 235 235 235 235 

Total 

WB (K) 
517 548 547 549 553 549 514 549 

Extra 

WB 
235 328 374 294 426 357 206 292 

Extra 

Nacks 
1 6 3 3 6 4 0 17 

resolve the multiple writes in the correct order. Fortu-

nately, as Table 5 shows for a representative bench-

mark--the HPCCG benchmark running in bounded 

determinism mode with 1024 instruction strata--these 

extra writebacks occur rarely, three orders of magni-

tude less often than regular writebacks. And since ex-

tra writebacks are rare, the directory almost never get 

nacks them (as may be necessary to ensure correct 

write ordering).  

These results are typical because most well-written 

programs are data-race-free, and thus will not store to a 

shared variable outside a critical section. Because of 

how Calvin handles atomic operations, critical sections 

are entered by at most one thread per stratum. Thus, 

extra writebacks will generally only occur due to false 

sharing, which is also relatively rare in well-

constructed software. 

6. Future Work 

As described so far, Calvin is applied at the system 

level. With modification, Calvin can also be applied in 

isolation to different domains running on the same ma-

chine, similar to how Capo virtualizes deterministic 

replay [28]. For example, it could execute one virtual 

machine deterministically and another conventionally 

in a consolidated workload environment. Future work 

will address the difficulties that could arise in a mul-

tiple-domain environment, such as making the hypervi-

sor invisible to the execution domain.  

Future work may also address scalability concerns 

of the Calvin-MIST implementation, particularly fo-

cusing on the barrier bottleneck. It is important to note 

that although Calvin-MIST uses a barrier, it is not 

strictly necessary to meet Calvin requirements. 

Finally, we may investigate methods to improve 

the performance of Calvin-MIST’s conventional mode. 

For example, it may not be necessary to wait at a bar-

rier in conventional mode and some protocol states 

could be optimized.  

7. Related Work 

The work most similar to Calvin is the CoreDet 

compiler infrastructure by Bergen, et al. [5]. CoreDet 

and Calvin both share the same insight that the TSO 

memory model can be exploited to provide determin-

ism, and both execute programs as a series of multi-

phase strata. CoreDet is implemented entirely in soft-

ware, though, whereas Calvin is a hardware memory 

model. Thus, the tradeoffs between the two are similar 

to other proposed mechanisms that can be implemented 

in either software or hardware, such as transactional 

memory systems [26]. The CoreDet runtime overhead 

varies between 1-11x whereas Calvin can execute with 

less than 0.5x and 20% on average overhead for all 

workloads. 

Deterministic Shared Memory Multiprocessing 

(DMP) [11] deterministically serializes execution 

quanta from each processor so that only one ordering is 

possible. They use Bulk’s transactional memory that 

broadcasts signatures to achieve parallelism among 

quanta by speculatively executing then rolling back if a 

conflict occurs. While DMP posts results similar to 

Calvin, they exclude privileged instructions from their 

evaluation, which we found to be a significant impact 

on performance.  

Kendo [32] proposes a software-only solution for 

achieving weak determinism, in which a program is 

repeatable only if it is data-race-free. Kendo uses a 

custom library for locks that ensures locks are always 

acquired in the same order, and experiences a 16% 

performance overhead. Calvin provides strong deter-

minism at a similar performance cost but requires 

hardware support. 

Other work in determinism has focused on a two-

phase record/replay approach [13,20,27,30,31,34,42]. 

These proposals supply hardware support for recording 

inputs and memory race outcomes to a log that is used 

later to replay an execution verbatim. Calvin does not 

require a recording phase, and instead guarantees that 

only one outcome exists given a program and inputs. 

Strata [30] is a proposal for deterministic 

record/replay, which, as the name suggests, bears simi-

larities to Calvin’s stratified execution. Strata is de-

signed for a system with sequential consistency, whe-

reas Calvin can take advantage of the implementation 

optimizations afforded by TSO.  

Programming languages exist [7,15] that guarantee 

deterministic execution by limiting how actors com-

municate. A Calvin system can run a program determi-

nistically regardless of the language or communication 

pattern. 

The UltraSPARC IV [22] contained a unit called 

the write cache that served as a coalescing buffer in the 

memory system. The UltraSPARCIV’s write cache was 

between the L1 and L2, though, and would only place 

blocks into the cache once they were globally ordered. 

Calvin’s write cache, on the other hand, sits between 

the processor and the L1 and inserts blocks before they 

are ordered in the memory system.  
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The Wisconsin Wind Tunnel [37] was a discrete 

event simulator that used a concept resembling Cal-

vin’s strata called a quantum. Two threads could not 

communicate in a quantum, which allowed for perfor-

mance optimizations. However, WWT could only si-

mulate a sequentially consistent execution and, because 

it was fundamentally cycle accurate simulator, did so 

considerably slower than Calvin. 

The timebomb state in Calvin-MIST resembles the 

concept of tear-off blocks proposed by Lebeck and 

Wood [23]. However, blocks in the timebomb state are 

invalidated deterministically whereas tear-off blocks 

are not. Two groups have also previously made the 

observation that delaying an invalidation for a small 

amount of time can actually improve performance by 

reducing the effect of false sharing [12] and by leading 

to better lock behavior under high contention [36]. Un-

like Calvin, neither delays the invalidation by a deter-

ministic amount of time. 

8. Conclusions 

We propose Calvin, a system that can execute in 

one of three modes: conventional nondeterministic, 

bounded deterministic, and unbounded deterministic. 

Depending on application requirements, Calvin imple-

mentations can switch among modes by adjusting the 

stratum termination condition. We show that Calvin 

running in conventional mode has minimal overhead 

compared to the baseline and may outperform the base-

line. Calvin systems execute deterministically with low 

performance overhead and no speculation.  
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Appendix A   Proof of Calvin-TSO Com-

patibility 

For ease of presentation, we discuss only loads and 

stores and ignore fairness. 

TSO. Weaver and Germond formally define the TSO 

memory model in their Appendix D [18,40] using the 

following notation: La and Sa represent a load and a 

store, respectively, to address a. Orders <p and <m 

define program and global memory order, respectively. 

For TSO: 

(1) Each of P processors inserts its loads and stores 

into global memory order <m preserving program 

order <p between two loads, two stores, and a load 

then a store (but not necessarily a store then a 

load).  

The value returned by each load La is given by: 

(2) Value(La) = Value (Max<m { S | Sa < m La or Sa 

<p La }) 

Intuitively, this dense equation means that load La gets 

its value from the last store that has updated coherent 

memory “Sa <m La” unless there is a later store that 

the load will bypass from the processor’s store buffer 

“Sa <p La”. 

Calvin. Calvin logically constructs a global memory 

order <m by partitioning the loads and stores in pro-

gram order <p into strata using the following rule: 

(a) For each stratum S, all memory operations in stra-

tum S are ordered in <m, such that they are after 

all the memory operations of stratum S -1 and be-

fore all the memory operations of stratum S +1.  

Moreover, Calvin orders memory operations within 

each stratum S as follows:  

(b) Each processor i inserts its loads into global mem-

ory order <m preserving program order <p and or-

dered after all loads from processor i-1 and before 

all loads from processor i+1, 

(c) Processor 1 inserts its stores into global memory 

order <m ordered after all loads from processor P. 

(d) Each processor i inserts its stores into global 

memory order <m preserving program order <p 

and ordered after all stores from processor i-1 and 

before all stores from processor i+1. 

 

Thus, Calvin constructs a global memory order <m 

compatible with TSO Rule (1).  Since Calvin also im-

plements store buffer bypassing, it implements TSO 

Rule (2). Therefore, Calvin is compatible with TSO. 


